• Title/Summary/Keyword: autolysin

Search Result 12, Processing Time 0.018 seconds

Antibacterial Activity of $NANOVER^{TM}$ Against Oral Malodor Generating Microorganisms 1. The Effect of Nanosilver on Growth of Oral Malodor Generating Microorganisms (구취유발세균에 대한 $NANOVER^{TM}$의 항균효과 검사 1. Nanosilver가 구취 세균의 증식에 미치는 영향)

  • Jung, Young-Hee;Mo, Hye-Won;Jeong, Ji-Suk;Choi, Kyung-Ho;Choi, Jae-Kap;Hur, Yun-Kyung;Lee, Sang-Heun
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Recently there is much interest in the antibacterial activity of nano-sized silver particle (nanosilver) since silver is known to be safe and effective as disinfectant for a long time. Oral malodor is considered to originate in the oral cavity primarily as a result of production of malodorous compounds by oral bacteria. Major compounds responsible for oral malodor are volatile sulfur compounds, which is thought to be generated by the G(-) anaerobic bacteria found normally in the oral cavity, especially on the dorsum of the tongue. The purposes of this study were to investigate the effect of nanosilver on growth of oral malodor generating microorganisms, including Fusobacterium nucleatum, Prevotella melaninogenica, Klebsiella pneumonia, and to determine the optimal culture condition of them. The results were as follows: 1. The optimal culture condition for P. melaninogenica was vacuum culture using desiccator after evacuation of air by vacuum pump in chopped beef meat media. 2. The growth of K. pneumonia was temporarily inhibited by nanosilver (5 ppm and 10 ppm). 3. The morphological alteration and cell damage caused by nanosilver were observed in K. pneumonia.

Characteristics of Hydrolytic Enzymes that Produced by Bacillus subtilis CK-2 Isolated from Doenjang (된장으로부터 분리한 Bacillus subtilis CK-2가 생산하는 가수분해효소의 활성 특성)

  • Lee, Sang-Hyup;Kim, Chul-Ho
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.805-811
    • /
    • 2017
  • In the previous paper, we isolated a bacterium that can hydrolyze various organic materials from soybean paste, including cellulose, lipids, starch, and protein. The activity and chemical properties of the crude enzymes produced by the isolate Bacillus subtilis CK-2 were further investigated. Cellulase showed the highest activity at pH 5.0 and $55^{\circ}C$. The stability of cellulase was maintained within the ranges of pH 5.0~10.0 and $20{\sim}50^{\circ}C$. Cellulolytic enzymes were activated by a $Co^{2+}$ ion, demonstrating the highest activity at a 0.45%(w/v) concentration of $Co^{2+}$. The optimal conditions for amylase were pH 5.0 and $50^{\circ}C$. The activity of amylase was stable within the ranges of pH 4.0~5.0 and $20{\sim}50^{\circ}C$. The $Co^{2+}$ ion was also necessary for amylase activity, which was the highest at a 0.2%(w/v) concentration of $Co^{2+}$. The optimal pH and temperature conditions of protease were pH 8.0 and $50^{\circ}C$. The activity of protease was stable within the ranges of pH 7.0~8.5 and $20{\sim}50^{\circ}C$. Protease activity was catalyzed by $Mn^{2+}$, which was the highest at a 0.125%(w/v) concentration of $Mn^{2+}$. The isolate B. subtilis CK-2 demonstrated a high activity of autolysin. Based on these results, we identified and suggested the optimal pH, temperature, and metal ion concentration in the use of the hydrolytic enzymes of B. subtilis CK-2 for industrial purposes.