• Title/Summary/Keyword: autoignition

Search Result 161, Processing Time 0.026 seconds

Measurement and Prediction of Combustion Properties of n-Phenol (페놀의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • The fire and explosion properties necessary for waste, safe storage, transport, process design and operation of handling flammable substances are lower explosion limits(LEL), upper explosion limits(UEL), flash point, AIT( minimum autoignition temperature or spontaneous ignition temperature), fire point etc., An accurate knowledge of the combustion properties is important in developing appropriate prevention and control measures fire and explosion protection in chemical plants. In order to know the accuracy of data in MSDSs(material safety data sheets), the flash point of phenol was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of phenol was measured by ASTM 659E apparatus. The explosion limits of phenol was investigated in the reference data. The flash point of phenol by using Setaflash and Pensky-Martens closed-cup testers were experimented at $75^{\circ}C$ and $81^{\circ}C$, respectively. The flash points of phenol by Tag and Cleveland open cup testers were experimented at $82^{\circ}C$ and $89^{\circ}C$, respectively. The AIT of phenol was experimented at $589^{\circ}C$. The LEL and UEL calculated by using Setaflash lower and upper flash point value were calculated as 1.36vol% and 8.67vol%, respectively. By using the relationship between the spontaneous ignition temperature and the ignition delay time proposed, it is possible to predict the ignition delay time at different temperatures in the handling process of phenol.

The Measurement of Combustible Characteristics of n-Undecane (노말언데칸의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • For the safe handling of n-undecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-undecane were calculated. The lower flash points of n-undecane by using closed-cup tester were measured $59^{\circ}C$ and $67^{\circ}C$. The lower flash points of n-undecane by using open cup tester were measured $67^{\circ}C$ and $72^{\circ}C$, respectively. The fire point of n-undecane by using Cleveland open cup tester was measured $74^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-undecane. The experimental AIT of n-undecane was $198^{\circ}C$. The estimated lower and upper explosion limit by using measured lower flash point $59^{\circ}C$ and upper flash point $83^{\circ}C$ for n-undecane were 0.65 Vol.% and 2.12 Vol.%.

The Measurement of Autoignition Temperature for n-Propanol and Formic acid System (n-Propanol과 Formic acid계의 자연발화온도 측정)

  • Park, Sang-Hun;An, Jong-Il;Kim, Se-Ho;Park, Yoon-A;Choi, Jin-Young;Han, Jin-Seok;Oh, Su-Yong;Jang, Seon-Yeon;Ha, Dong-Myeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.164-164
    • /
    • 2013
  • 화학 관련 산업은 고온, 고압뿐만 아니라 반응성이 큰 물질들을 사용하는 복잡한 공정으로 이에 맞는 안전기술이 요구된다. 산업 현장에서 취급하고 있는 각종 화학물질의 안전관리를 어렵게 하는 이유는 취급하는 물질의 화재 및 폭발 특성치에 관한 자료가 부족하거나 정확하지 않은 연소 특성치를 사용하기 때문이다. 가연성물질의 연소현상 가운데 하나인 자연발화는 가연성 혼합기체에 열 등의 형태로 에너지가 주어졌을 때 스스로 타기 시작하는 산화현상으로, 주위로부터 충분한 에너지를 받아서 스스로 점화할 수 있는 최저온도를 최소자연발화온도(AIT : Auto ignition Temperature)라고 한다. 최소자연발화온도는 가연성 액체의 안전한 취급을 위해 중요한 지표가 된다. 순수물질의 최소자연발화온도를 문헌들에서 비교하면, 동일 물질인데도 불구하고 문헌에 따라 다른 최소자연발화온도가 제시되고 있다. 따라서 사업장에서 사고를 예방하기 위해서는 정확한 연소 특성 자료를 이용해야 해야 한다. 그러나 문헌에 제시된 대부분의 자료들은 과거 표준장치 및 자체 제작된 장치 등을 사용해서 얻은 결과이므로, 최근에 고안된 표준 장치를 이용한 결과가 매우 유용한 자료가 될 것으로 본다. 본 연구에서는 자연발화온도를 측정하는데 있어서 최근에 고안된 표준장치인 ASTM E659장치를 이용하여 n-Propanol과 Formic acid 혼합물의 최소자연발화 온도를 측정하였다. n-Propanol과 Formic acid 혼합물의 최소자연발화 온도는 화학 관련 산업 공정에서 매우 중요한 자료가 될 것이다.

  • PDF

The Characteristics of Exhaust Gas Emissions with GTL Fuel (GTL연료의 배출가스 특성 연구)

  • Gwoak, Soon-Chul;Seo, Chung-Yul;Kang, Dae-Il;Park, Jung-Min;Yim, Yoon-Sung;Hwan, Chun-Sik;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Dug;Jung, Choong-Sub;Jang, Eun-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.17-22
    • /
    • 2007
  • GTL(Gas-to-Liquids) fuel technology was converted from the natural gas, coal and biomass into the diesel or kerosene by Fisher-Tropsch synthesis. GTL fuel have very good merits on high cetane number, low density, free sulfur, lower aromatics contents and no poly-aromatic hydrocarbons as well as the autoignition characteristics. These physical properties make it valuable as a diesel fuel with lower emissions than the conventional diesel fuel. Furthermore, GTL fuel can be use not to the engine any modification. Therefore, to evaluate emissions of GTL fuel, the tested diesel vehicles were fueled on blends of GTL fuel/ultra low sulfur diesel fuel(ULSD). And then, we found out that GTL fuel reduced regulated emissions(CO, NOx, HC, PM) compare with conventional diesel fuel.

The Study on the Compatibility of MSDS by Means of Measurement of Combustible Properties for Isobutylalcohol(IBA) (이소부틸알코올(IBA)의 연소특성치 측정에 의한 MSDS의 적정성 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • For the safe handling of isobutylalcohol(IBA), this study was investigated the explosion limits of isobutylalcohol in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. By using the literatures data, the lower and upper explosion limits of isobutylalcohol recommended 1.7 Vol% and 10.9 Vol.%, respectively. The lower flash point of isobutylalcohol by using Setaflash and Penski-Martens closed-cup testers were experimented $25^{\circ}C$ and $30^{\circ}C$, respectively. The lower flash point isobutylalcohol by using Tag and Cleveland open cup testers were experimented $36^{\circ}C$ and $39^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for isobutylalcohol. The experimental AIT of isobutylalcohol was $400^{\circ}C$.

A Study on the Reliability of the Combustible Properties for Acrylic Acid (아크릴릭산의 연소특성치의 신뢰성 연구)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2015
  • For the reliability of the combustible properties of arylic acid, this study was investigated the explosion limits of acrylic acid in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of acrylic acid by using Setaflash and Pensky-Martens closed-cup testers were experimented in $48^{\circ}C$ and $51^{\circ}C$, respectively. The lower flash points of arylic acid by using Tag and Cleveland open cup testers were experimented in $56^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acrylic acid. The AIT of acrylic acid was experimented as $417^{\circ}C$. The lower explosion limit(LEL) and the upper explosion limit(UEL) by the measured the lower flash point and the upper flash point of acrylic acid were calculated as 2.2 Vol% and 7.9 Vol%, respectively.

Measurement and Investigation of Combustible Properties of n-Heptane for Risk Assessment of Gasoline Tank (가솔린탱크의 위험성평가를 위한 노말헵탄의 연소특성치 측정 및 고찰)

  • Ha, Dong-Myeong;Jeong, Kee-Sin;Lee, Sung-Jin;Cho, Yong-Sun;Yoon, Myung-O
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.76-81
    • /
    • 2010
  • For the safe handling of n-heptane, the explosion limit at $25^{\circ}C$, the temperature dependence of the explosion limits and the lower flash point were investigated. And AITs (auto-ignition temperatures) by ignition time delay for n-heptane were experimented. By using the literatures data, the lower and upper explosion limits of n-heptane recommended 1.0 Vol% and 7.0 Vol%, respectively. And the lower flash points of n-heptane recommended $-4^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-heptane and the experimental AIT of n-hexane was $225^{\circ}C$. The new equation for predicting the temperature dependence of the explosion limits of n-heptane is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

A Study on Design of a Catalytic Ignitor for Liquid Rocket Engine using Hydrogen Peroxide and Kerosene (과산화수소/케로신을 사용하는 액체로켓엔진의 촉매 점화기 설계에 관한 연구)

  • Chae, Byoung-Chan;Lee, Yang-Suk;Jun, Jun-Su;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • An experimental study on design of a catalytic ignitor was performed to use an ignition source for a small bi-propellant liquid rocket engine which use hydrogen peroxide and kerosene as propellants. In the catalytic ignitor, hot gas of hydrogen peroxide which was decomposed by a catalyst induced autoignition of kerosene. Mass flow rate and O/F ratio for the ignitor were calculated by CEA code. A combustion chamber which had a quartz window and thermocouples was manufactured to determine whether the ignition is successful. Ignition performance was investigated according to exit area of fixed rings and mixture ratio. Results showed that reliable ignition performance was achieved at non-choking exit area of fixed ring and O/F ratio of 6~8.

The Measurement and Prediction of Combustible Properties for Ethylbenzene (에틸벤젠의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • For the safe handling of ethylbenzene, this study was investigated the explosion limits of ethylbenzene in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of ethylbenzene by using Setaflash closed-cup and Pensky-Martens closed-cup testers were experimented $20^{\circ}C$ and $22^{\circ}C$, respectively. The lower flash points ethylbenzene by using Tag and Cleveland open cup testers were experimented $25^{\circ}C$ and $28^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for ethylbnezene. The experimental AIT of ethylbenzene was $430^{\circ}C$. The calculated LEL and UEL by using the measured lower flash point and upper flash point were 0.93 Vol.% and 7.96 Vol.%, respectively.

Measurement and Prediction of Combustuion Properties of di-n-Buthylamine (디노말부틸아민의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.42-47
    • /
    • 2019
  • In this study, combustion characteristics were measured by selecting di-n-buthylamine, which is widely used as an emulsifier, insecticide, additive, rubber vulcanization accelerator, corrosion inhibitor, and raw material for dye production. The flash point of the di-n-buthylamine was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the di-n-buthylamine was measured by ASTM 659E. The explosion limits of the di-n-buthylamine was calculated using the measured flash points by Setaflash tester. The flash point of the di-n-buthylamine by using Setaflash and Pensky-Martens closed-cup testers were experimented at 38 ℃ and 43 ℃, respectively. The flash points of the di-n-buthylamine by Tag and Cleveland open cup testers were experimented at 48 ℃. The AIT of the di-n-buthylamine was experimented at 247 ℃. The LEL and UEL calculated by using lower and upper flash points of Setaflash tester were calculated at 0.69 vol% and 7.7 vol%, respectively. The measurement of the flash point measurement and the calculation method of the explosion limit prediction presented in this study can be used to study the fire and explosion characteristics of the other combustible liquids.