• 제목/요약/키워드: autoignition

검색결과 161건 처리시간 0.023초

n-Pentanol p-Xylene 과 혼합물의 최소자연발화온도와 발화지연시간의 측정 및 예측 (Measurement and Prediction of Autoignition Temperature (AIT) and Ignition Delay Time of n-Pentanol and p-Xylene Mixture)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.1-6
    • /
    • 2017
  • 가연성물질의 화재 및 폭발 특성치는 안전한 취급, 저장, 수송, 처리 및 폐기하는데 반드시 필요하다. 공정 안전을 위한 대표적인 연소특성치로 최소자연발화온도(AIT)를 들 수 있다. 최소자연발화온도는 가연성 액체의 안전한 취급을 위해서 중요한 지표가 된다. 최소자연발화온도는 가연성물질이 주위의 열에 의해 스스로 발화하는 최저온도이다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-Pentanol과 p-Xylene 혼합물의 최소자연발화온도와 발화지연시간을 측정하였다. 2성분계를 구성하는 순수물질인 n-Pentanol과 p-Xylene의 최소자연발화온도는 각각 $285^{\circ}C$, $557^{\circ}C$로 측정되었다. 그리고 측정된 n-Pentanol과 p-Xylene 혼합물의 최소자연발화온도와 AIT에서의 발화지연시간의 실험값은 제시된 식에 의한 계산값과 적은 평균절대오차에서 일치하였다. 따라서 본 연구에서 제시한 예측식들을 이용하여 n-Pentanol과 p-Xylene 혼합물의 다른 조성에서도 최소자연발화온도와 발화지연시간을 예측이 가능하다.

고온벽면에 의한 수소-공기 예혼합기체의 자연발화에 관한 수치적 해석 (Numerical Analysis on the Autoignition of Hydrogen/Air Mixture Near a Hot Surface)

  • 박은성;백승욱
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.70-76
    • /
    • 1992
  • 본 연구에서는 수소와 공기의 예혼합기체가 가열된 벽면에 노출되어 있는 경 우의 점화문제를 1차원 비정상상태로 예측하고자 하며 특히, 계산에서 가정하는 화학 반응기구가 갖는 정확성에 관하여 수치해석적으로 고찰하고자 한다.

고속 직분식 디젤 엔진에서의 점화지연시기 예측 (Prediction of Ignition Delay for HSDI Diesel Engine)

  • 임재만;김용래;온형석;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1704-1709
    • /
    • 2004
  • New reduced chemical kinetic mechanism for prediction of autoignition process of HSDI diesel engine was investigated. For precise prediction of the ignition characteristics of diesel fuel, mechanism coefficients were fitted by the experimental results of ignition delay of diesel spray in a constant volume vessel. Ignition delay of diesel engine on various operation condition was calculated based on the new reduced chemical mechanism. The calculation results agreed well with experimental data.

  • PDF

CARS 측정 기술을 이용한 스파크 점화 기관에서의 화염 전 화학 반응에 의한 온도 변화에 관한 연구 (A Study of the Temperature Elevation Due to the Pre-flame Reaction in a Spark-Ignition Engine Using CARS Technique)

  • 최인용;전광민;박철웅;한재원
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.9-16
    • /
    • 2001
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark- ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached look. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

터보과급 및 EGR을 사용하는 직접분사식 디젤엔진의 연소특성에 미치는 Ar과 He첨가의 영향 (Effects of Ar/He Dilution on Combustion Characteristics in DI Diesel Engine using Turbocharging and EGR)

  • 권영동;김용모;박신배;백현종;이동권
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.140-156
    • /
    • 1997
  • The combustion characteristics of DI Diesel engine using turbocharging and EGR are numerically studied. Computations are carried out for the wide range of trubochyarged pressures, EGR ratios, and Ar/He dilution. Numerical results indicate that the Ar/He dilution in the intake gas significantly influence the engine performance, the spray combustion process, and the pollutant formation.

  • PDF

주위온도 변화에 따른 입상활성탄의 자연발화에 관한 연구 (A Study on Autoignition of Granulated Activated Carbon with Change of Ambient Temperature)

  • 목연수;최재욱
    • 한국안전학회지
    • /
    • 제7권4호
    • /
    • pp.45-53
    • /
    • 1992
  • Sponataneous ignition characteristics for granulated activated carbon were observed by performing experiments at constant ambient temperature and varying the ambient temperature sinusoidally. In case of varying the ambient temperature sinusoidally, the amplitudes of temperature were 5$^{\circ}C$, 1$0^{\circ}C$ and 15$^{\circ}C$ respectively, and the period in each amplitude was varied at an interval of 30minutes from zero to 3hours. As the results of experiments at a constant ambient temperature, the critical spontaneous ignition temperature of the sample decreased as the sample vessel size increased. Apparent activation energy of the sample calculated from the Frank-Kamenetskii's thermal Ignition theory was 38.82[kca1/mo1] In case of varying the ambient temperature sinusoidally, the critical spontaneous ignition tempera-ture was lower than that at the constant ambient temperature, and the minimum critical spontaneous ignition temperature decreased with the amplitude of heating sinusoidal curve. At the same amplitude, the critical spontaneous ignition temperature decreased until it reached the minimum point and then in-creased as the period increased.

  • PDF

오토크레졸의 MSDS 연소특성치의 적정성 연구 (A Study on the Appropriateness of the Combustible Properties of MSDS for o-Cresol)

  • 하동명
    • 한국안전학회지
    • /
    • 제30권2호
    • /
    • pp.21-26
    • /
    • 2015
  • For the safe handling of o-cresol, this study was investigated the explosion limits of o-cresol in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of o-cresol by using closed-cup tester were experimented in $77^{\circ}C$ and $80^{\circ}C$. The lower flash points of o-cresol by using open cup tester were experimented in $86^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for o-cresol. The AIT of o-cresol was experimented as $495^{\circ}C$. The lower explosion limit(LEL) by the measured the lower flash point for o-cresol was calculated as 1.27 Vol%.

Autoignition of Urethane Foam to be Used as the Insulator of the Household Refrigerator

  • Choi, Jae Wook;Mok, Yun Soo
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.47-51
    • /
    • 2002
  • This study was performed by measuring the minimum ignition temperature of polyurethane form recovered from the recycling process of the end-of-life home appliances. The critical ignition temperature of polyurethane form was lower as the size of the sample vessel was increased, and that of polyurethane form using cyclopentane as the forming agent was relatively lower than the polyurethane form using CFC and the combustion of cyclopentane-polyurethane form occurred fiercely. It is considered that the recycling process of end-of-life home appliances using cyclopentane-polyurethane form as the insulator would require a special fire and dust explosion prevention measures since there exists a high potential hazard of fire and dust explosion during crushing and storage processes.

스파크노크 발생에 대한 이론적 예측방법 (Theoretical Prediction Method on Occurrence of Spark Knock)

  • 이내현;오영일;이성열
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3326-3334
    • /
    • 1994
  • To theoretically predict knock occurrence in S. I. engine as a function of engine design and operating parameters, transient local temperature and pressure, mixture density of flame front in combustion period are calculated. We next determined normal combustion period and auto ignition period of end gas using the prediction method on occurrence of spark knock which we suggested. We predict knock occurrence in S. I. engine by comparing consecutively normal combustion period with the auto ignition period of end gas in combustion period. Engine design and operating parameters such as compression ratio, engine speed, spark timing, inlet temperature and pressure are taken into account in this calculations. The predicted result are well matched with the experimental results in turbocharged engine. Therefore, this method will provide the systematic guideline for designing engines in view of knocking limits.

난류확산연소에서의 conditional moment closure modeling (Conditional moment closure modeling in turbulent nonpremixed combustion)

  • 허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.24-32
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OH in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF