• 제목/요약/키워드: autocentral series

검색결과 2건 처리시간 0.021초

THE LOWER AUTOCENTRAL SERIES OF ABELIAN GROUPS

  • Moghaddam, Mohammad Reza R.;Parvaneh, Foroud;Naghshineh, Mohammad
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.79-83
    • /
    • 2011
  • In the present paper we introduce the lower autocentral series of autocommutator subgroups of a given group. Following our previous work on the subject in 2009, it is shown that every finite abelian group is isomorphic with $n^{th}$-term of the lower autocentral series of some finite abelian group.

AUTOCOMMUTATORS AND AUTO-BELL GROUPS

  • Moghaddam, Mohammad Reza R.;Safa, Hesam;Mousavi, Azam K.
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.923-931
    • /
    • 2014
  • Let x be an element of a group G and be an automorphism of G. Then for a positive integer n, the autocommutator $[x,_n{\alpha}]$ is defined inductively by $[x,{\alpha}]=x^{-1}x^{\alpha}=x^{-1}{\alpha}(x)$ and $[x,_{n+1}{\alpha}]=[[x,_n{\alpha}],{\alpha}]$. We call the group G to be n-auto-Engel if $[x,_n{\alpha}]=[{\alpha},_nx]=1$ for all $x{\in}G$ and every ${\alpha}{\in}Aut(G)$, where $[{\alpha},x]=[x,{\alpha}]^{-1}$. Also, for any integer $n{\neq}0$, 1, a group G is called an n-auto-Bell group when $[x^n,{\alpha}]=[x,{\alpha}^n]$ for every $x{\in}G$ and each ${\alpha}{\in}Aut(G)$. In this paper, we investigate the properties of such groups and show that if G is an n-auto-Bell group, then the factor group $G/L_3(G)$ has finite exponent dividing 2n(n-1), where $L_3(G)$ is the third term of the upper autocentral series of G. Also, we give some examples and results about n-auto-Bell abelian groups.