• Title/Summary/Keyword: auto-associative neural network

Search Result 18, Processing Time 0.019 seconds

Unsupervised Incremental Learning of Associative Cubes with Orthogonal Kernels

  • Kang, Hoon;Ha, Joonsoo;Shin, Jangbeom;Lee, Hong Gi;Wang, Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • An 'associative cube', a class of auto-associative memories, is revisited here, in which training data and hidden orthogonal basis functions such as wavelet packets or Fourier kernels, are combined in the weight cube. This weight cube has hidden units in its depth, represented by a three dimensional cubic structure. We develop an unsupervised incremental learning mechanism based upon the adaptive least squares method. Training data are mapped into orthogonal basis vectors in a least-squares sense by updating the weights which minimize an energy function. Therefore, a prescribed orthogonal kernel is incrementally assigned to an incoming data. Next, we show how a decoding procedure finds the closest one with a competitive network in the hidden layer. As noisy test data are applied to an associative cube, the nearest one among the original training data are restored in an optimal sense. The simulation results confirm robustness of associative cubes even if test data are heavily distorted by various types of noise.

"Left Shoulder" Detection in Korea Composite Stock Price Index Using an Auto-Associative Neural Network and Sign Variables (자기연상학습 신경망과 부호변수를 이용한 종합주가지수)

  • 백진우;조성준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.320-322
    • /
    • 2000
  • 본 논문에서 제안한 종합주가지수 "왼쪽어깨" 패턴 검출은 자기 연상 학습 신경망을 사용하였다. 종합주가 지수 데이터에서 머리어깨모형 중 왼쪽 어깨에 해당하는 데이터로 신경망을 학습시킨 후 이를 이용하여 현재 혹은 테스트 데이터를 입력으로 주어 성능을 평가하였다. 결과는 비교적 우수하였다. 패턴 검출에 의한 투자를 하였을 경우 17개월간의 누적 수익률이 132% 였다. 이 기간동안 buy and hold 전략을 사용했을 경우의 수익률은 39% 였다.률은 39% 였다.

  • PDF

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

Neural Network Cubes (N-Cubes) for Unsupervised learning in Gray-Scale noise

  • Lee, Won-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.571-576
    • /
    • 1999
  • We consider a class of auto-associative memories namely N-Cubes (Neural-network Cubes) in which 2-D gray-level images and hidden sinusoidal 1-D wavelets are stored in cubical memories. First we develop a learning procedure based upon the least-squares algorithm, Therefore each 2-D training image is mapped into the associated 1-D waveform in the training phase. Second we show how the recall procedure minimizes errors among the orthogonal basis functions in the hidden layer. As a 2-D images ould be retrieved in the recall phase. Simulation results confirm the efficiency and the noise-free properties of N-Cubes.

  • PDF

Application of Sensor Fault Detection Method to Water Measurement System (센서 고장 검출 기법의 수질 계측 시스템에의 적용)

  • Lee, Young-Sam;Han, Yun-Jong;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2289-2291
    • /
    • 2003
  • NLPCA(Nonlinear Principal Component Analysis is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA can be implemented by a feedforward neural network called AANN (AutoAssociative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA and Maximum Likelihood Estimation scheme is presented. To verify its applicability, simulation study on the data supplied from Saemangeum measurement stations is executed.

  • PDF

Design of A Faulty Data Recovery System based on Sensor Network (센서 네트워크 기반 이상 데이터 복원 시스템 개발)

  • Kim, Sung-Ho;Lee, Young-Sam;Youk, Yui-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.

Development of the Hippocampal Learning Algorithm Using Associate Memory and Modulator of Neural Weight (연상기억과 뉴런 연결강도 모듈레이터를 이용한 해마 학습 알고리즘 개발)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.37-45
    • /
    • 2006
  • In this paper, we propose the development of MHLA(Modulatory Hippocampus Learning Algorithm) which remodel a principle of brain of hippocampus. Hippocampus takes charge auto-associative memory and controlling functions of long-term or short-term memory strengthening. We organize auto-associative memory based 3 steps system(DG, CA3, CAl) and improve speed of learning by addition of modulator to long-term memory learning. In hippocampal system, according to the 3 steps order, information applies statistical deviation on Dentate Gyrus region and is labelled to responsive pattern by adjustment of a good impression. In CA3 region, pattern is reorganized by auto-associative memory. In CAI region, convergence of connection weight which is used long-term memory is learned fast by neural networks which is applied modulator. To measure performance of MHLA, PCA(Principal Component Analysis) is applied to face images which are classified by pose, expression and picture quality. Next, we calculate feature vectors and learn by MHLA. Finally, we confirm cognitive rate. The results of experiments, we can compare a proposed method of other methods, and we can confirm that the proposed method is superior to the existing method.

Development of Real-Time Face Region Recognition System for City-Security CCTV (도심방범용 CCTV를 위한 실시간 얼굴 영역 인식 시스템)

  • Kim, Young-Ho;Kim, Jin-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.504-511
    • /
    • 2010
  • In this paper, we propose the face region recognition system for City-Security CCTV(Closed Circuit Television) using hippocampal neural network which is modelling of human brain's hippocampus. This system is composed of feature extraction, learning and recognition part. The feature extraction part is constructed using PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis). In the learning part, it can label the features of the image-data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in a dentate gyrus and remove the noise through the auto-associative memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are shape change and light change. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.