• Title/Summary/Keyword: auto control

Search Result 1,186, Processing Time 0.031 seconds

A study on high speed, high precision auto-alignment system (고속 고정도 자동정렬장치에 관한 연구)

  • 박대헌;이성훈;김가규;이연정;이승하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.32-35
    • /
    • 1997
  • A recent development in the Flat Panel Display(FPD) industry requires an auto-alignment system which is operated in high speed and high precision. In the FPD production process, aligning photo-mask with respect to guide mark printed in the glass should be accomplished in the accuracy of sub-micron order. So the system has high bandwidth and needs a dedicated control system which is fast and robust enough to control linear motors in precise manner. Proposed auto-alignment system structure in this presentation which consists of the master controller board, the DSP position controller board which controls 3 axis precision linear motors, the servo system and the man machine interface software. Designed and tuned under repeated experiments, the proposed system showed a reasonable performance in the aspect of rise time and steady state error.

  • PDF

STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES

  • Wang, F.;Zhang, T.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.361-373
    • /
    • 2007
  • In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System (Auto-Pilot 시스템의 센서 및 actuator 고장진단을 위한 Failure Detection Filter)

  • Sang-Hyun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 1993
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dim in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF

Analysis of WLAN Performance Depending on ARF Scheme with TCP and UDP Protocols (TCP와 UDP 프로토콜 상에서 ARF 기법에 따른 무선랜 성능 분석)

  • Kim Namgi;Lee Min;Yoon Hyunsoo
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.395-400
    • /
    • 2005
  • The IEEE 802.11b WLAN supports multiple transmission rates and the rate is chosen in an adaptive manner by an auto rate control algorithm. This auto rate control algorithm deeply affects the total system performance of the IEEE 802.11b WLAN. In this paper, we examine the WLAN performance with regard to the auto rate control algorithm especially the ARF scheme. The experimental results indicate that the ARF scheme works well in the face of signal noise due to node location. However, the ARF scheme severely degrades system performance when multiple nodes contend to obtain the wireless channel and the packet is lost due to signal collision. In addition, TCP prevent the performance degradation due to ARF scheme by retaining number of active nodes. However, some applications, such as transporting multimedia data, adopt the UDP. Therefore, the TCP cannot be an optimal solution for all WLAN applications.

Vibration Isolation Control using PSO Algorithm for Auto-tuning of PID Parameters

  • Oh, Se-Boung;Park, Chang-Su;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1380-1385
    • /
    • 2004
  • In this paper, auto-tuning technique of the PID controller gain by particle swarm optimization algorithm is presented. PID controller is easy to implement to numerous control systems. After PID gain tuning is completed, its result could be implemented to control spacecraft vibration such as jitter that is high frequency vibration usually over 10Hz. The off-line PID controller tuning is done under system nonlinearities and uncertainties existence, then its result is applied to control experiment device to prove the PSO efficiencies.

  • PDF

Auto-parking Controller of Omnidirectional Mobile Robot Using Image Localization Sensor and Ultrasonic Sensors (영상위치센서와 초음파센서를 사용한 전 방향 이동로봇의 자동주차 제어기)

  • Yun, Him Chan;Park, Tae Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.571-576
    • /
    • 2015
  • This paper proposes an auto-parking controller for omnidirectional mobile robots. The controller uses the multi-sensor system including ultrasonic sensor and camera. The several ultrasonic sensors of robot detect the distance between robot and each wall of the parking lot. The camera detects the global position of robot by capturing the image of artificial landmarks. To improve the accuracy of position estimation, we applied the extended Kalman filter with adaptive fuzzy controller. Also we developed the fuzzy control system to reduce the settling time of parking. The experimental results are presented to verify the usefulness of the proposed controller.

A Study on Energy Saving Algorithm of Pneumatic Regulator with Modified PWM Driven Method

  • Kim, H.S.;Ahn, K.K.;Lee, B.R.;Yun, S.N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1339-1342
    • /
    • 2005
  • The development of an accurate and energy saving pneumatic regulator that may be applied to a variety of practical pressure control applications is described in this paper. A novel modified pulse width modulation(MPWM) valve pulsing algorithm allows the pneumatic regulator to become energy saving system. A comparison between the system response of conventional PWM algorithm and that of the modified PWM(MPWM) algorithm shows that the control performance is almost the same, but energy saving is greatly improved by adopting this new MPWM algorithm. The effectiveness of the proposed control algorithm is demonstrated through experiments with various reference trajectories.

  • PDF

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System

  • Suh, Sang-Hyun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.75-88
    • /
    • 1995
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship's direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dimension in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF

On the Auto Tuning of Fuzzy PID Controller

  • Kim, Yoon-Sang;Oh, Hyun-Cheol;Ahn, Doo-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.57-62
    • /
    • 1998
  • This paper presents an auto tuning method of PID controller based on the application of fuzzy logic. The proposed method combined the principles of PID control with fuzzy control, which cam considerably improve the performance index of PID controller. Simulation results show that higher performance and accuracy of overall system for desired value is achieved with our manner when compared to widely-used conventional tuning method.

  • PDF

Development of the Auto Balance System (Auto Balance System 개발)

  • Kwon H. H.;Kwon S. K.;Suh K. Y.;Lee H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.462-465
    • /
    • 2002
  • In this treatise, we developed a balance grinding appointment main axis of auto balancing that can control all vibrancy components and instability of cutting area, disturbance etc.. including high speed unbalance quantities more than 6,000 rpm on the basis of estimate control technology that consider grinding mechanism to purpose balancing on the of machine.

  • PDF