• 제목/요약/키워드: augmented matrix

검색결과 98건 처리시간 0.028초

증강현실을 위한 실시간 마커리스 3차원 객체 추적 (Realtime Markerless 3D Object Tracking for Augmented Reality)

  • 민재홍;이슬람 모하마드 카이툴;폴 안잔 쿠마;백중환
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.272-277
    • /
    • 2010
  • 증강현실은 실세계의 정보와 가상의 정보를 연결시키기 위한 매개체가 요구되며, 이러한 매개체를 지속적으로 추적 인식하는 기술을 필요로 한다. 이러한 기술 중에 마커를 이용한 광학 트랙킹이 주류를 이루고 있으나 마커를 부착하는 과정이 불편하고 오래 걸리므로 최근에는 마커리스 트랙킹 기법이 활발히 연구되고 있다. 본 논문은 2차원 평면 즉 동일평면상의 특징점들을 트랙킹하는 방법이 아닌3차원 객체에 대한 특징점을 추출하여 실시간으로 트랙킹하는 방법을 제안한다, SURF(Speed Up Robust Features)를 이용하여 특징점을 추출하고 이를 POSIT(Pose Object System for Iteration) 알고리즘으로 3차원 객체의 회전과 이동정보를 얻어 실시간으로 객체를 추적한다. 추적 실패시 실시간으로 재추적이 가능하도록 빠른 특징점 추출과 매칭을 통하여 트랙킹에 적합한 특징점을 선택하여 객체의 위치와 회전 정보를 얻어 객체를 실시간으로 추적 및 재표현 하였다.

증강현실을 이용한 응급환자 의료서비스 향상 모델 설계 (A Design of Service Improvement Model for Emergency Medical System using Augmented Reality)

  • 정윤수;김용태;박길철
    • 융합정보논문지
    • /
    • 제7권1호
    • /
    • pp.17-24
    • /
    • 2017
  • 최근 의료 분야에서는 증강 현실이 수술 및 의료 교육용으로 많이 활용되고 있다. 그러나, 응급 환자의 경우 의료 분야의 특성으로 인하여 증강 현실 기술이 적용되고 있지 못하고 있는 상황이다. 본 논문에서는 증강현실 기반의 IT 장치를 통해 응급 환자에게 신속한 의료 서비스를 지원할 수 있는 의료 서비스 지원 모델을 제안한다. 제안 모델은 증간현실 기반의 IT 기기를 통해 단순히 응급 조치에 필요한 정보를 수집하는 기능 이외에 응급 상황에 적절한 응급 조치 방법을 의료진에게 전달받아 서비스를 지원하는 기능이 있다. 또한, 제안 모델은 AHP(Analytic Hierarchy Process) 기반으로 응급 환자 신상 정보 조회, 응급 환자 상태 및 응급 치료와 관련된 정보를 계층적으로 수집한다. 수집된 정보들은 정보들 간의 애매성을 보완하기 위해서 쌍대비교 행렬을 이용한다. 특히, 수집된 정보는 의료진이 있는 병원 서버에 저장되어 수집된 정보의 고유 정보 이외에 추가적으로 수집된 정보를 반영하여 의료진이 의료 서비스에 반영할 수 있도록 한다.

계통의 종합적 미소신호 안정도해석에 관한 연구 (A Study on Integrated Small Signal Stability Analysis of Power Systems)

  • 남해곤;송성근;김용구;심관식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1033-1036
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

계통의 종합적 미소신호 안정도해석에 관한 연구 (A Study on Integrated Small Signal Stability Analysis of Power Systems)

  • 남해곤;송성근;김용구;심관식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.685-688
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

계통의 종합적 미소신호 안정도해석에 관한 연구 (A Study on Integrated Small Signal Stability Analysis of Power Systems)

  • 남해곤;송성근;김용구;심관식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.365-368
    • /
    • 1998
  • In this research project two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

백서 두개골 결손부에서 동결건조골과 gel/putty 형 탈회골기질의 골재생효과 (The effect of the freeze dried bone allograft and gel/putty type demineralized bone matrix on osseous regeneration in the rat calvarial defects)

  • 김득한;홍지연;방은경
    • Journal of Periodontal and Implant Science
    • /
    • 제39권3호
    • /
    • pp.349-358
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of the Freeze Dried Bone Allograft and Demineralized Bone Matrix on osseous regeneration in the rat calvarial defects. Methods: Eight mm critical-sized calvarial defects were created in the 80 male Sprague-Dawley rats. The animals were divided into 4 groups of 20 animals each. The defects were treated with Freeze Dried Bone Allograft($SureOss^{TM}$), Demineralized Bone Matrix($ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty), or were left untreated for sham-surgery control and were evaluated by histologic and histomorphometric parameters following a 2 and 8 week healing intervals. Statistical analysis was done between each groups and time intervals with ANOVA and paired t-test. Results: Defect closure, New bone area, Augmented area in the $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than in the sham-surgery control group at each healing interval(P < 0.05). In the New bone area and Defect closure, there were no significant difference between experimental groups. Augmented area in the $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than $SureOss^{TM}$ group at 2weeks(P < 0.05), however there was no significant difference at 8 weeks. Conclusions: All of $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups showed significant new bone formation and augmentation in the calvarial defect model.

루에 동적 시스템을 위한 샘플데이타 제어 (Sampled-data Control for Lur'e Dynamical Systems)

  • 유아연;이상문
    • 전기학회논문지
    • /
    • 제63권2호
    • /
    • pp.261-265
    • /
    • 2014
  • This paper studies the problem of the sampled-data control for Lur'e system with nonlinearities. The nonlinearities are expressed as convex combinations of sector and slope bounds. It is assumed that the sampling periods are arbitrarily varying but bounded. By constructing a new augmented Lyapunov-Krasovskii functional which have an augmented quadratic form with states as well as the nonlinear function, the stabilizing sampled-data controller gains are obtained by solving a set of linear matrix inequalities. The effectiveness of the developed method is demonstrated by numerical simulations.

상태변수피이드백에 의한 선형다변수제어시스템의 분할식설계에 관한 연구 (The Decoupling And Design Of Linear Multivariable Control Systems By State Variable Feedback)

  • 황창선
    • 전기의세계
    • /
    • 제23권2호
    • /
    • pp.46-54
    • /
    • 1974
  • The purposes of this paper are to deal with the design of m-input, m-output linear systems by the state variable feedback, and to extend the design capability of the state variable feedback design. The design requirements are decoupling and the exact realigation of desired transfer functions. Some methods are proposed to insert series compensators in the fixed plant in the cases when series compensators are needed to meet the input-output transfer matrix specification. The method for adding series compensators to the input channels of the fixed plant is shown by examples to lead both to the loss of the ability to decouple the augmented plant by the state variable feedback, and to the loss of desired zeroes. A method which avoids these two hazards is developed in which series compensators are put on the output channels of the fixed plant: it is proved that the augmented plant is F-invariant. By treating each subsystem individually, the designer can apply some of the previous developed knowledge of the state variable design of single-input, single-output systems.

  • PDF