• Title/Summary/Keyword: attitude sensor

Search Result 353, Processing Time 0.027 seconds

Star Visibility Analysis for a Low Earth Orbit Satellite

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.28.2-28.2
    • /
    • 2008
  • Recently, star sensors have been successfully used as main attitude sensors for attitude control in many satellites. This research presents the star visibility analysis for star trackers and the goal of this analysis is to make sure that the star tracker implementation is suitable to the mission profile and scenario and satisfies the requirement of attitude orbit control system. As a main optical attitude sensor imaging stars, accomodations of a star tracker should be optimized in order to improve the probability of the usage by avoiding the blinding (the unavailability) by the Sun and the Earth. For the analysis, a statistical approach and a time simulation approach are used. The statistical approach is based on the generation of numerous cases, to derive relevant statistics about Earth and Sun proximity probabilites for different lines of sight. The time simulation approach is performed for one orbit to check the statistical result and to refine the statistical result and accomodations of star trackers. In order to perform simulations first of all, an orbit and specific mission profiles of a satellite are set, next the earth proximity probability and the sun proximity probability are calculated by considering the attitude maneuvers and the geometry of the orbit, and then finally the unavailability positions are estimated. As a result, the optimized accomodations of two star trackers are suggested for the low earth orbit satellite.

  • PDF

Development of Hardware-in-the-loop Simulator for Spacecraft Attitude Control using thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.3-36
    • /
    • 2008
  • The ground-based spacecraft simulator is a useful tool to realize various space missions and satellite formation flying in the future. Also, the spacecraft simulator can be used to develop and verify new control laws required by modern spacecraft applications. In this research, therefore, Hardware-in-the-loop (HIL) simulator which can be demonstrated the experimental validation of the theoretical results is designed and developed. The main components of the HIL simulator which we focused on are the thruster system to attitude control and automatic mass-balancing for elimination of gravity torques. To control the attitude of the spacecraft simulator, 8 thrusters which using the cold gas (N2) are aligned with roll, pitch and yaw axis. Also Linear actuators are applied to the HIL simulator for automatic mass balancing system to compensate for the center of mass offset from the center of rotation. Addition to the thruster control system and Linear actuators, the HIL simulator for spacecraft attitude control includes an embedded computer (Onboard PC) for simulator system control, Host PC for simulator health monitoring, command and post analysis, wireless adapter for wireless network, rate gyro sensor to measure 3-axis attitude of the simulator, inclinometer to measure horizontality and battery sets to independently supply power only for the simulator. Finally, we present some experimental results from the application of the controller on the spacecraft simulator.

  • PDF

Flight Attitude Control of using a Fuzzy Controller (퍼지제어기를 이용한 비행 자세제어)

  • Park, Jong-Oh;Sul, Jae-Hoon;Kim, Sung-Chul;Lim, Young-Do
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.91-96
    • /
    • 2003
  • The forces and moments at the aircraft c.g. have components due to aerodynamic effects and to engine thrust. For the flight stability and autopilot systems we present a attitude control method using an intelligent control algorithm Which is based on the control rules from experts knowledge concerning the motion equations and other experiences. Then a robust fuzzy controller is developed to control the flight attitude. The controller can deal with multiple inputs and outputs. We have made an aircraft model and the orientation sensor for experimental flights. The control rules based on the flight expert s experience and knowledge can be programmed by fuzzy rules, and determined control rules by experimental flight. We can be stable attitude control by fuzzy controller.

Attitude analysis induced by the disturbances on COMS using the received telemetries during normal mode (정상모드에서 수신된 텔레메트리를 이용한 외란에 의한 천리안위성 자세영향 분석)

  • Park, Young-Woong;Park, Bong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.27-41
    • /
    • 2012
  • In this paper, there is analyzed the disturbances to impact on COMS attitude and the attitude error using the received telemetries in KARI ground station during normal mode of COMS. COMS was launched successfully at Kourou, French Guiana on the 26th of June, 2010. Up to now after IOT(in-orbit test), COMS is performing well the main mission to measure meteorology and ocean during about half and one year. The disturbances to impact on COMS attitude are mostly by the Sun, by the motion of payload mirror and by the spike happened during operation of earth sensor mirror and wheel. The analysis result on the other cases happened rarely during the nominal operation, is summarized.

A Study on the Determination of Star Sensors Mounting Direction for Remote Sensing Satellites (관측위성을 위한 별센서 탑재 방향 결재에 관한 연구)

  • Lee, Hun-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.735-740
    • /
    • 2007
  • Star sensor provides highly accurate attitude information by imaging the stars in the dark space. The sensor output is disabled when the sensor avoidance of the Sunlight or the Earth's albedo is not satisfied. This paper studies the Sun and Earth avoidance characteristics of the star sensors according to the mounting direction. Then the paper proposes a systematic way of determining the star sensors mounting direction for typical remote sensing missions

A STUDY ON ENCODING/DECODING TECHNIQUE OF SENSOR DATA FOR A MOBILE MAPPING SYSTEM

  • Bae, Sang-Keun;Kim, Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.705-708
    • /
    • 2005
  • Mobile Mapping Systems using the vehicle equipped the GPS, IMU, CCD Cameras is the effective system for the management of the road facilities, update of the digital map, and etc. They must provide users with the sensor data which is acquired by Mobile Mapping Systems in real-time so that users can process what they want by using the latest data. But it' s not an easy process because the amount of sensor data is very large, particularly image data to be transmitted. So it is necessary to reduce the amount of image data so that it is transmitted effectively. In this study, the effective method was suggested for the compression/decompression image data using the Wavelet Transformation and Huffman Coding. This technique will be possible to transmit of the geographic information effectively such as position data, attitude data, and image data acquired by Mobile Mapping Systems in the wireless internet environment when data is transmitted in real-time.

  • PDF

Study on Direction Sensor for reduce perforation risk in Endoscopy (천공부작용 해소용 내시경 Direction Sensor 설계)

  • Kang, Sang-man;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.328-330
    • /
    • 2016
  • 내시경을 이용한 진단 및 시술은 빈번하게 이루어지고 있으며, 대장암의 증가와 정부의 암 조기검진사업의 영향으로 시행건수가 많아지면서 천공 및 출혈 등의 의료사고도 늘어나고 있다. 내시경 장비를 이용한 시술은 시술자의 경험이나 감각, 숙련도에 의존하여 시행된다. 내시경 시술시 내시경 선단부의 수평 및 수직, 압력에 대한 실시간 정보를 제공하면 의료사고를 줄일 수 있다. 본 논문에서는 가속도와 자이로센서를 융합하여 각도 및 자세정보를 얻고 압력센서를 이용하여 선단부가 받는 압력을 시술자에게 제공하여 내시경 시술시 천공 및 출혈 등의 의료사고를 줄일 수 있는 방안을 제시한다.

  • PDF

The Sensitivity Enhancement for the Deflection Sensor of the Marine Gyrocompass Follow-up System (자이로콤파스 추종계통 편각검출기에 관한 연구)

  • 이상집;이은방
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.2
    • /
    • pp.33-42
    • /
    • 1988
  • As a basic study for enhancing the sensitivity of the follow-up system of the marine gyrocompass, the geometric characteristics of the deflection sensor were investigated and the theoretical model of it was formulated. The output signal voltage of the deflection sensor was esamined by changing the attitude of gyrosphere against follow-up container. The characteristics of the output are found to be indentical with those of the distance difference versus the relative azimuthal deflection of the gyrosphere against the follow up container. On the base of the theoretical model, some useful points for the design of the deflection sensor are suggested as following : 1. When the difference between semidiamter of gyrophere and that of the follow-up container decreases, the sensitivity of deflection sensor increases. 2. If the semidiameter difference of two spheres is constant, the sensitivity of deflection sensor is proportional to the magnitude of the semidiamter of each sphere. 3. The farther the gyrosphere is deviated from the center of follow-up container, the higher the sensitivity of deflection sensor is. 4. It is recommendable that the value of the datum deflection of the electrodes on the gyrosphere should be within the range between $4^{\circ}$ and $16^{\circ}$deviated from north-south line.

  • PDF

Development of Sensor Device and Probability-based Algorithm for Braille-block Tracking (확률론에 기반한 점자블록 추종 알고리즘 및 센서장치의 개발)

  • Roh, Chi-Won;Lee, Sung-Ha;Kang, Sung-Chul;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2007
  • Under the situation of a fire, it is difficult for a rescue robot to use sensors such as vision sensor, ultrasonic sensor or laser distance sensor because of diffusion, refraction or block of light and sound by dense smoke. But, braille blocks that are installed for the visaully impaired at public places such as subway stations can be used as a map for autonomous mobile robot's localization and navigation. In this paper, we developed a laser sensor stan device which can detect braille blcoks in spite of dense smoke and integrated the device to the robot developed to carry out rescue mission in various hazardous disaster areas at KIST. We implemented MCL algorithm for robot's attitude estimation according to the scanned data and transformed a braille block map to a topological map and designed a nonlinear path tracking controller for autonomous navigation. From various simulations and experiments, we could verify that the developed laser sensor device and the proposed localization method are effective to autonomous tracking of braille blocks and the autonomous navigation robot system can be used for rescue under fire.

Scalar Adaptive Kalman Filtering for Stellar Inertia! Attitude Determination

  • Jung, Jae-Woo;Cho, Yun-Cheol;Bang, Hyo-Choong;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.88-94
    • /
    • 2002
  • This paper describes attitude determination algorithm for the low earth orbit(LEO) spacecraft using stellar inertial sensors. The cascaded gyro/star tracker extended Kalman filter is constructed to fuse two sensor data. And then the smoothing of the measurement are proposed for an unreasonable jump of star tracker. The smoothing algorithm for the rejection of star tracker error jumps is designed by scalar adaptive filter. The proposed algorithms operate to process the measurement of gyro/star tracker Kalman filter, therefore, it is comparatively simple to apply these methods to other integration systems. Simulations to gyro/star tracker integrated system show that the proposed method is effective.