• Title/Summary/Keyword: attenuated

Search Result 2,449, Processing Time 0.027 seconds

Fructus Sophorae Enhances the Production of Prostaglandin E2 and Tumor Necrosis Factor-α through Activation of MAPKs and PI3K/AKT Signaling Pathways in Murine Macrophages (대식세포에서 MAPKs 및 PI3K/AKT 신호전달계 활성을 통한 괴각 추출물의 prostaglandin E2 및 tumor necrosis factor-α 생성의 촉진)

  • Kang, Young-Soon;Han, Min Ho;Lee, Moon Hee;Hong, Su Hyun;Park, Heungsik;Jung, Jae-Chul;Lee, Jeongrai;Lee, Eun-Woo;Kang, Kyung Hwa;Kim, Cheol Min;Kim, Byung-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1397-1403
    • /
    • 2013
  • Fructus Sophorae, the dried ripe fruit of Styphnolobium japonicum (L.), is an herbal ingredient used in traditional Oriental medicine. This study was carried out to investigate the effects of Fructus Sophorae extracts (FSE) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the production of prostaglandin $E_2$ ($PGE_2$) and tumor necrotic $factor-{\alpha}$ ($TNF-{\alpha}$) were evaluated. Our data revealed that FSE increased the macrophage activation and the production of $PGE_2$ and $TNF-{\alpha}$, which was consistently correlated with upregulation of cyclooxygenase-2 (COX-2) and $TNF-{\alpha}$ expression at both transcriptional and translational levels. On comparative cytokine protein array, FSE significantly increased several cytokines, which was associated with phosphorylation of mitogen- activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), and Akt in RAW 264.7 cells. However, each inhibitor of these molecules attenuated the FSE-induced $PGE_2$ production. These results indicate that FSE activated macrophages through the activation of MAPKs and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways in RAW 264.7 macrophages. These findings suggest that FSE may provide a promising source of an immunoenhancing agent.

Protective Effect of Radiation-induced New Blackberry Mutant γ-B201 on H2O2-induced Oxidative Damage in HepG2 Cells (H2O2 에 의해 유도된 HepG2 세포의 산화적 스트레스에 대한 신품종 방사선 돌연변이 블랙베리 γ-B201의 세포 보호 효과)

  • Cho, Byoung Ok;Lee, Chang-Wook;So, Yangkang;Jin, Chang-Hyun;Yook, Hong-Sun;Byun, Myung-Woo;Jeong, Yong-Wook;Park, Jong Chun;Jeong, Il-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.384-389
    • /
    • 2014
  • The objective of the present study was to investigate the chemical composition of anthocyanin-enriched extract of radiation-induced blackberry (Rubus fruticosus L.) mutant (${\gamma}$-B201) as well as the protective effect of ${\gamma}$-B201 against oxidative stress in vitro. The cytotoxicity, reactive oxygen species (ROS) scavenging capacity, and DNA damage were assessed by WST-1 assay, flow cytometry, and comet assay, respectively. Lactate dehydrogenase, superoxide dismutase, and catalase activities were determined by using a commercial kit. The in vitro results showed that ${\gamma}$-B201 increased the cell viability, reduction of lactate dehydrogenase release, and intracellular ROS scavenging capacity in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells. Furthermore, treatment with ${\gamma}$-B201 attenuated DNA damage in $H_2O_2$-treated HepG2 cells and treatment with ${\gamma}$-B201 restored the activity of superoxide dismutase and catalase in $H_2O_2$-treated HepG2 cells. In conclusion, the present study suggests that ${\gamma}$-B201 blackberry extract can exert a significant cytoprotective effect against $H_2O_2$-induced cell damage.

Effect of Genistein and Daidzein on Antioxidant Defense System in C57BL/KsJ-db/db Mice (Genistein과 Daidzein 급여가 제2형 당뇨동물모델의 적혈구와 조직 중의 항산화방어계에 미치는 영향)

  • Park, Sun-Ae;Kim, Myung-Joo;Jang, Joo-Yeun;Choi, Myung-Sook;Yeo, Ji-Young;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1159-1165
    • /
    • 2006
  • Our preliminary study showed that genistein and daidzein improved blood glucose level in type 2 diabetic mice by enhancing the glucose and lipid metabolism. The objective of this study was to evaluate whether genistein and daidzein are associated with alterations in antioxidant defense mechanism of type 2 diabetic mice. Male C57BL/KsJ-db/db (db/db) mice and age-matched non-diabetic littermates (db/+) were used in this study. The db/db mice were divided into control, genistein (0.02%, w/w) and daidzein (0.02%, w/w) groups. The relative weights of liver, epididymal adipose tissue and perirenal adipose tissue were significantly higher in the db/db group than in the db/+ group, whereas heart weight was lower. The genistein and daidzein supplement did not affect the organ weights in db/db mice. The blood glucose level was positively correlated with superoxide dismutase (SOD, r=0.380, p<0.05) and catalase (CAT, r=0.345, p<0.05) activities and negatively correlated with glutathione peroxidase (GSH Px, r= 0.404, p<0.05) activity in erythrocyte. Therefore, the erythrocyte SOD and CAT activities were significantly elevated in the db/db group compared to the db/+ group and the GSH-Px activity was lowered. However, the supplementation of genistein and daidzein reversed erythrocyte CAT and GSH-Px activities in type 2 diabetic mice. In this current study, the SOD activities in liver, kidney and heart were significantly not different between the groups. The CAT and GSH-Px activities in liver and GSH-Px activity in kidney were significantly higher in the db/db group than in the db/+ group, while the CAT activity in kidney, CAT and GSH-Px activities in heart were lowered. The supplementation of genistein and daidzein significantly attenuated the changes of CAT and/or GSH-Px activities in liver and heart. The supplementation of genistein and daidzein elevated GSH levels in kidney and heart compared to the db/db control group. The lipid peroxide levels in liver, kidney and heart were significantly lowered in the genistein and daidzein supplemented groups compared to the db/db control group. These results suggest that genistein and daidzein might be beneficial for the prevention of type 2 diabetic complication via suppressing changes of antioxidant enzymes activities with simultaneous reduction of lipid peroxidation.

Anti-inflammatory Activity of Antimicrobial Peptide Protaetiamycine 2 Derived from the Protaetia brevitarsis seulensis (흰점박이꽃무지 유래 항균 펩타이드 프로테티아마이신 2의 항염증활성)

  • Lee, Joon Ha;Baek, Minhee;Lee, Hwa Jeong;Kim, In-Woo;Kim, Sun Young;Seo, Minchul;Kim, Mi-Ae;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1218-1226
    • /
    • 2019
  • The white-spotted flower chafer Protaetia brevitarsis seulensis is a medicinally beneficial and important edible insect species. We previously performed an in silico analysis of the Protaetia brevitarsis seulensis transcriptome to identify putative antimicrobial peptides and then tested their antimicrobial and hemolytic activities. These peptides had potent antimicrobial activities against bacteria and yeast without inducing hemolysis. In the present study, the cationic antimicrobial peptide, protaetiamycine 2, was selected for further assessment of its anti-inflammatory properties in mouse macrophage Raw264.7 cells. Protaetiamycine 2 treatment of Raw264.7 cells suppressed LPS-induced nitric oxide production and reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2, as determined by real-time PCR and western blotting. The expression of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) was also attenuated through the MAPKs and $NF-{\kappa}B$ signaling. We also confirmed that protaetiamycine 2 bound to bacterial cell membranes by a specific interaction with LPS. Collectively, these data obtained from LPS-induced Raw264.7 cells indicated that protaetiamycine 2 could have both antimicrobial and anti-inflammatory properties.

Anti-inflammatory effects of Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium (영지버섯균 발효 꾸지뽕나무 가지 톱밥 추출물의 항염증 활성)

  • Park, Se-Eun;Kim, Myung Kon;Kim, Seung
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.225-233
    • /
    • 2021
  • In this study, we evaluated the anti-inflammatory effect of extract from Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium. Fermented Cudrania tricuspidata twig sawdust extracted with 70% ethanol and elucidated the potential signaling pathway in lipopolysaccharide (LPS)-induced RAW264.7 cells. Fermented Cudrania tricuspidata twig sawdust inhibits LPS-stimulated nitric oxide (NO) production without affecting cell viability in a dose-dependent manner and production of LPS-induced pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and prostaglandin2 (PGE2). Fermented Cudrania tricuspidata twig sawdust also suppressed the expression of the pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells. Moreover, Fermented Cudrania tricuspidata twig sawdust significantly attenuated LPS-induced IkappaB (IκB) degradation and suppressed nuclear factor kappa B (NF-κB) nuclear translocation. These results suggest that fermented Cudrania tricuspidata twig sawdust may have great potential for the development of anti-inflammatory agent.

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 lipopolysaccharide 자극에 의한 염증성 및 산화적 스트레스에 미치는 5-aminolevulinic acid phosphate의 영향)

  • Ji, Seon Yeong;Kim, Min Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cha, Hee-Jae;Kim, Heui-Soo;Kim, Suhkmann;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.818-826
    • /
    • 2021
  • 5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.

A Case of Hunter Syndrome Diagnosed at 7 Months of Age by Exome Sequencing (엑솜시퀀싱을 통해 생후 7개월에 진단된 헌터증후군)

  • Song, Ari;Lee, Jin Sung;Im, Minji;Park, Hyung Doo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • Hunter syndrome, also known as mucopolysaccharidosis Type II (MPS II), is one of the lysosomal storage diseases caused by a lack of the enzyme iduronate 2-sulfatase (I2S). Lack of the I2S enzyme activity leads to accumulation of the glycosaminoglycans (GAG), causing dysfunction of multiple organs and systems. MPS II is an X-linked recessive disease due to mutation of IDS gene located on long arm of the X chromosome (Xq28). To date, more than 350 mutations of IDS gene have been identified in Hunter syndrome. Phenotypes of MPS II are classified as either severe or attenuated depending on the degree of cognitive impairment. Because the phenotype of MPS II is related to the type of mutation, identifying mutations is useful in predicting prognosis. We recently had a case of MPS II diagnosed by exome sequencing in a 7 month old boy with infantile spasm uncontrolled by AED. He was diagnosed with hearing loss at 2 months of age, and he took vigabatrin and prednisolone to control infantile spasms diagnosed at 3 months of age. At 6 months of age, whole exome sequencing was performed to evaluate the infantile spasm and hearing loss in this patient, and the mutation c.851C>T (p.Pro284Leu) inherited from hemizygous mother was revealed. The results of urine Cetylpyridinium Chloride (CPC) precipitation test, which were negative until 8 months of age, were positive from 9 months of age. We report a case of MPS II diagnosed by exome sequencing and treated through enzyme replacement therapy from 9 months after birth.

  • PDF

Clinical Spectrum and Short-term Effects of Enzyme Replacement Therapy for Mucopolysaccharidosis Type II (제2형 뮤코다당증의 임상적 스펙트럼과 효소대치요법의 단기간 효과)

  • Cheon, Chong Kun;Hwu, Wuh-Liang
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • Purpose: We aimed to delineate clinical spectrum and short-term effects after enzyme replacement therapy (ERT) for 5 mucopolysaccharidosis type II (MPS II). Methods: Five patients were diagnosed with MPS II by clinical findings, enzyme activity, and genetic testing. Idursulfase was administered by intravenous infusion at a dose of 0.5 mg/kg every week. Observational chart analysis of patients, who underwent systematic investigations more than 12 months after initiation of ERT was done retrospectively. Results: Three patients were classified as having the attenuated type, and 2 patients were classified as having the severe type. The median age at the diagnosis was 9.6 years (range 3.4-26 years). Four different mutations in 5 Korean patients (4 families) with MPS II were identified, among which two were novel mutations (1 small insertion mutation: p.Thr409Hisfs*22, and 1 missense mutation: p.Gly134Glu). Two severe type sibling patients with the same mutation had different clinical manifestation. Urinary glycosaminoglycan excretion decreased within the twelve months of ERT (P=0.043). Liver and spleen volumes showed reductions that were maintained in all patients (P=0.043 and P=0.043, respectively). Improvements were also noted in left ventricular mass index (P=0.042), shoulder flexion (P=0.043), shoulder abduction (P=0.039), knee flexion (P=0.043), elbow flexion (P=0.042), and respiratory distress index (P=0.041). Conclusion: This study demonstrates that Korean patients with MPS II are clinically heterogeneous and indicates that idursulfase is relatively effective in several clinical parameters including heart size and respiratory distress index without infusion-related reactions in patients with MPS II.

  • PDF

Ethanol Extract of Glycyrrhiza uralensis Protects Against Oxidative Stress-induced DNA Damage and Apoptosis in Retinal Pigment Epithelial Cells (망막색소상피세포에서 감초 추출물의 산화적 스트레스에 의한 DNA 손상 및 apoptosis 유발의 차단 효과)

  • Kim, So Young;Kim, Jeong-Hwan;Kim, Sung Ok;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1273-1280
    • /
    • 2019
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly population, and damage to retinal pigment epithelial (RPE) cells due to oxidative stress contributes to the development of AMD. Glycyrrhiza uralensis Fischer is one of the most widely used herbal medicines for the treatment of various diseases in Asian countries. Although recent studies indicated that treatment with G. uralensis can protect cells from oxidative stress, its mechanisms in RPE cells remain unknown. We evaluated the effect of a G. uralensis ethanol extract (GU) on $H_2O_2$-induced oxidative injury in ARPE-19 RPE cells. The GU pretreatment attenuated reactive oxygen species (ROS) generation induced by $H_2O_2$, which was associated with induced expression of nuclear factor erythroid-derived-2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). GU also suppressed $H_2O_2$-induced DNA damage and mitochondrial dysfunction. The inhibitory effect of GU on $H_2O_2$-induced apoptosis was associated with the protection of caspase-3 activation. Overall, GU appeared to protect RPE cells from oxidative injury by inhibiting DNA damage and reducing apoptosis. Further studies are needed to determine the regulation of Nrf2-mediated HO-1 expression, but our results suggest the possibility of using GU to reduce the risk of AMD.

Steap4 Stimulates Adipocyte Differentiation through Activation of Mitotic Clonal Expansion and Regulation of Early Adipogenic Factors (Steap4에 의한 지방세포분화 촉진 기전)

  • Sim, Hyun A;Shin, Jooyeon;Kim, Ji-Hyun;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1092-1100
    • /
    • 2020
  • The six-transmembrane epithelial antigen of prostate 4 (Steap4) is a metalloreductase that plays a role in intracellular iron and cupper homeostasis, inflammatory response, and glucose and lipid metabolism. Previously, Steap4 has been reported to stimulate adipocyte differentiation; however, the underlying mechanisms of this action remain unexplored. In the present study, we investigated the molecular mechanisms involved in Steap4-induced adipocyte differentiation using 3T3-L1 cells, immortalized brown adipocyte (iBA) cells, and mouse embryonic fibroblast C3H10T1/2 cells. The knockdown of Steap4 using adenovirus-containing shRNA attenuated mitotic clonal expansion (MCE), as evidenced by the impaired proliferation of 3T3-L1 cells, iBA cells, and C3H10T1/2 cells within 48 hr after adding the differentiation medium. Steap4 knockdown downregulated G1/S phase transition-related cell cycle regulators (including cyclin A and cyclin D) and upregulated cell cycle inhibitors (including p21 and p27). Furthermore, Steap4 knockdown inhibited the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and Akt. Moreover, Steap4 knockdown repressed the expression of early adipogenic activators, such as CCAAT-enhancer-binding protein β (C/EBPβ) and Kruppel-like factor family factor 4 (KLF4). On the other hand, Steap4 knockdown stimulated the expression of adipogenic inhibitors, including KLF2, KLF3, and GATA2. The overexpression of Steap4 using an adenovirus removed the repressive histone marks H3K9me2 and H3K9me3 on the promoter of C/EBPβ. These results indicate that Stepa4 stimulates adipocyte differentiation through the induction of MCE and the modulation of early adipogenic transcription factors, including C/EBPβ, during the early phase of adipocyte differentiation.