• 제목/요약/키워드: attention 기법

검색결과 990건 처리시간 0.022초

Stack-Attention을 이용한 흐릿한 영상 강화 기법 (Blurred Image Enhancement Techniques Using Stack-Attention)

  • 박채림;이광일;조석제
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.83-90
    • /
    • 2023
  • 컴퓨터 비전에서 흐릿한 영상은 영상 인식률을 저하시키는 중요한 요인이다. 이것은 주로 카메라가 불안정하게 초점을 맞추지 못하거나, 노출시간동안 장면의 물체가 빠르게 움직일 때 발생한다. 흐릿한 영상은 시각적 품질을 크게 저하시켜 가시성을 약화시키며, 이러한 현상은 디지털카메라의 기술이 지속적으로 발전하고 있음에도 불구하고 빈번하게 일어난다. 본 논문에서는 합성곱 신경망으로 설계된 심층 멀티 패치 계층 네트워크(Deep multi patch hierarchical network)를 기반으로 수정된 빌딩 모듈을 대체하여 입력 영상의 디테일을 잡고 주의 집중 기법을 도입하여 흐릿한 영상 속 물체에 대한 초점을 다방면으로 맞추어 영상을 강화한다. 이것은 서로 다른 스케일에서 각각의 가중치를 측정 및 부여하여 흐림의 변화를 차별적으로 처리하고 영상의 거친 수준에서 미세한 수준까지 순차적으로 복원하여 글로벌한 영역과 로컬 영역 모두 조정한다. 이러한 과정을 통해 저하된 화질을 복구하고 효율적인 객체 인식 및 특징을 추출하며 색 항상성을 보완하는 우수한 결과를 보여준다.

혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크 (Denoising Self-Attention Network for Mixed-type Data Imputation)

  • 이도훈;김한준;전종훈
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.135-144
    • /
    • 2021
  • 최근 데이터 기반 의사결정 기술이 데이터 산업을 이끄는 핵심기술로 자리 잡고 있는바, 이를 위한 머신러닝 기술은 고품질의 학습데이터를 요구한다. 하지만 실세계 데이터는 다양한 이유에 의해 결측값이 포함되어 이로부터 생성된 학습된 모델의 성능을 떨어뜨린다. 이에 실세계에 존재하는 데이터로부터 고성능 학습 모델을 구축하기 위해서 학습데이터에 내재한 결측값을 자동 보간하는 기법이 활발히 연구되고 있다. 기존 머신러닝 기반 결측 데이터 보간 기법은 수치형 변수에만 적용되거나, 변수별로 개별적인 예측 모형을 만들기 때문에 매우 번거로운 작업을 수반하게 된다. 이에 본 논문은 수치형, 범주형 변수가 혼합된 데이터에 적용 가능한 데이터 보간 모델인 Denoising Self-Attention Network(DSAN)를 제안한다. DSAN은 셀프 어텐션과 디노이징 기법을 결합하여 견고한 특징 표현 벡터를 학습하고, 멀티태스크 러닝을 통해 다수개의 결측치 변수에 대한 보간 모델을 병렬적으로 생성할 수 있다. 제안 모델의 유효성을 검증하기 위해 다수개의 혼합형 학습 데이터에 대하여 임의로 결측 처리한 후 데이터 보간 실험을 수행한다. 원래 값과 보간 값 간의 오차와 보간된 데이터를 학습한 이진 분류 모델의 성능을 비교하여 제안 기법의 유효성을 입증한다.

상향식 주의 모듈을 사용한 디지털 워터마킹 기법 (A Digital Image Watermarking Using A Bottom-up Attention Module)

  • 최경주
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.293-300
    • /
    • 2008
  • 본 논문에서는 상향식 방식의 주의모듈을 사용하여 얻어지는 의미론적으로 중요한 영역에 워터마킹을 삽입하는 새로운 방법을 제안한다. 본 논문에서는 저작물을 공격하는 제3자가 영상 전체 정보가 아닌 몇몇 영역 및 물체에 관심을 가지고 있다는 사실에 착안하여 의미론적으로 중요하다고 생각되는 영역에 워터마크 정보를 삽입한다. 이는 전통적인 워터마킹 방법이 영상의 전체 영역에 걸쳐 워터마크를 삽입하는 것과는 다른 접근방법이다. 워터마크가 삽입되는 관심영역은 인간의 상향식 방식의 시각적 주의에 기반하여 모델링 된 주의모듈을 통해 얻는다. 본 논문을 통해 제안되는 워터마크 기법은 워터마크가 전체 영상이 아닌 몇몇 주요영역에 삽입되므로 중요부분이 공격당하기 어렵게 되며, 워터마크를 확인하여 소유권자를 구분할 때에도 워터마크가 관심영역 안에 있기 때문에 삽입된 워터마크의 탐지율이 높아진다. 실험결과를 통해 제안하는 방법의 효용성을 확인하였다.

비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가 (Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis)

  • 이지은;유선국;이병채
    • 감성과학
    • /
    • 제16권3호
    • /
    • pp.409-416
    • /
    • 2013
  • 집중은 관련된 사건을 선택적으로 주의하고, 관련 없는 사건을 무시하는 인간의 중요한 인지 기능중의 하나이다. 인간의 집중 능력을 관리 이용하는 컴퓨터 기반 장치에 있어서 집중과 비집중 상태를 구분하는 것은 필수적으로 요구되는 조건이다. 본 논문에서는, 뇌파신호로부터 분류기의 입력으로 사용되는 특징을 효율적으로 추출하기 위하여 비선형 반복 패턴 분석기법과 스펙트럼 분석 기법을 새로이 결합하였고(13개 특징 추출), 서포트벡터머신, 역전파 알고리즘, 선형분리, 로지스틱 회귀 분류 기반 분류기들을 포함하는 집중-비집중 분류기들의 성능을 분석하였다. 그중에서 81 %의 정확도를 보이는 서포트벡터머신 분류기가 가장 좋은 성능을 보였다. 또한 스펙트럼 분석으로 추출한 특징만을 사용하였을 경우(76 % 정확도)가 비선형 분석 방법으로 추출한 특징만을 사용했을 경우(67 % 정확도)보다 좀 더 우수한 성능을 보였다. 비선형-스펙트럼 분석법을 복합 적용한 서포트벡터머신 분류기가 추후 집중 관련 장비 설계에 있어서 효율적으로 적용될 수 있을 것이다.

  • PDF

CT 영상에서 폐 결절 분할을 위한 경계 및 역 어텐션 기법 (Boundary and Reverse Attention Module for Lung Nodule Segmentation in CT Images)

  • 황경연;지예원;윤학영;이상준
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.265-272
    • /
    • 2022
  • As the risk of lung cancer has increased, early-stage detection and treatment of cancers have received a lot of attention. Among various medical imaging approaches, computer tomography (CT) has been widely utilized to examine the size and growth rate of lung nodules. However, the process of manual examination is a time-consuming task, and it causes physical and mental fatigue for medical professionals. Recently, many computer-aided diagnostic methods have been proposed to reduce the workload of medical professionals. In recent studies, encoder-decoder architectures have shown reliable performances in medical image segmentation, and it is adopted to predict lesion candidates. However, localizing nodules in lung CT images is a challenging problem due to the extremely small sizes and unstructured shapes of nodules. To solve these problems, we utilize atrous spatial pyramid pooling (ASPP) to minimize the loss of information for a general U-Net baseline model to extract rich representations from various receptive fields. Moreover, we propose mixed-up attention mechanism of reverse, boundary and convolutional block attention module (CBAM) to improve the accuracy of segmentation small scale of various shapes. The performance of the proposed model is compared with several previous attention mechanisms on the LIDC-IDRI dataset, and experimental results demonstrate that reverse, boundary, and CBAM (RB-CBAM) are effective in the segmentation of small nodules.

선택적 주의 기법 기반의 영상의 기대효과 자동생성 (Perception based video anticipation generation)

  • 윤종철;이인권
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제13권3호
    • /
    • pp.1-6
    • /
    • 2007
  • 기대효과란 행동이 시작하기 전에 반대반향으로 일어나는 행동을 위한 준비단계로 주로 이차원 애니메이션에서 행동을 강조하기 위해 사용되어 왔다. 본 논문은 영상을 매개로 하여 인식 기반의 기대효과를 자동 생성함으로써 시청자의 주의를 임의의 정보에 집중시키는 방법을 제안한다. 이미지 기반의 집중점을 찾는 문제와 영상속의 움직임을 찾는 방법을 바탕으로 집중성 강화 알고리즘을 역으로 풀어 기대효과를 생성하는 방법을 제시한다. 주요점에 정보를 반대로 약화시키는 기대효과를 통해 주요점을 더욱 역동적으로 강조 할 수 있다. 본 논문의 알고리즘을 통해 광고 등의 전보전달을 위한 영상 또는 역동적 표현이 필요한 영상의 보정이 가능해진다.

  • PDF

인터페이스 상의 움직임에 만화적 기법 적용이 매력도와 주의에 미치는 영향 (The effects of cartoon style for interface motion on attraction and attention)

  • 조유숙;석지혜;한광희
    • 감성과학
    • /
    • 제12권4호
    • /
    • pp.519-530
    • /
    • 2009
  • 기술적인 발전에 따라 다양한 인터페이스가 등장하고 있다. 2D 일색이었던 인터페이스에 3D가 등장하기 시작했고 정적이던 화면 구성에 움직이는 요소들이 더해지고 있다. 움직임이 있는 자극들이 인터페이스에 쓰이면서 그 적절한 사용에 대해 알아볼 필요가 있다. 본 연구는 이런 움직임에 초점을 맞추고 있다. 특히 움직임의 여러 속성 중에서도 움직임에 스타일을 줄 수 있는 스쿼시 & 스트레치의 적용에 초점을 두고 있다. 본 연구는 움직임에 스쿼시 & 스트레치 기법의 적용이 움직임의 매력도와 감성, 주의에 미치는 영향을 알아보았다. 실험 1에서 참가자들은 스쿼시 & 스트레치 기법이 적용된 구와 적용되지 않은 구 모양 물체의 움직임을 보고 매력도와 움직임 관련 감성어휘를 평정하였다. 그 결과 스쿼시 & 스트레치 기법이 적용된 움직임을 더매력적으로 지각할 뿐만 아니라 해당 움직임을 더 밝고 적극적으로 지각하게 됨을 밝혔다. 실험 2는 스쿼시 & 스트레치가 적용된 구와 그렇지 않은 구를 화면에 동시에 제시하고, 참가자들이 변화를 탐지하는 반응시간을 측정했다. 그 결과 스쿼시 & 스트레치 기법이 적용된 움직임의 변화를 탐지하는 반응시간이 더 빨랐다. 이는 해당 움직임이 더 주의를 끌게 됨을 의미한다.

  • PDF

잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법 (Single Image Super Resolution Based on Residual Dense Channel Attention Block-RecursiveSRNet)

  • 우희조;심지우;김응태
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.429-440
    • /
    • 2021
  • 최근 심층 합성 곱 신경망 학습의 발전에 따라 단일 이미지 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여주고 있다. 현존하는 딥러닝 기반 초해상도 기법들 중 하나로 잔여 밀집 블록을 이용하여 초기의 특징 정보를 마지막 계층에 전달하여 이후의 계층들이 이전의 계층들의 입력정보를 사용하여 복원하는 RDN(Residual Dense Network)이 있다. 하지만 계층적인 모든 특징을 연결하여 학습하고 다수의 잔여 밀집 블록을 쌓게 되면 좋은 성능에도 불구하고 많은 파라미터의 수와 연산량을 가지게 되어 느린 처리 속도와 네트워크를 학습하는데 많은 시간이 소요되고 모바일 시스템에 적용이 어렵다는 단점을 가지고 있다. 본 논문에서는 이전의 정보를 다시 사용하는 연속 메모리 구조인 잔여 밀집 구조와 이미지의 특징맵에 따라 중요도를 결정해주는 채널 집중 기법을 이용한 잔여밀집 채널 집중 블록을 재귀적인 방식으로 사용하여 추가적인 파라미터 없이 네트워크의 깊이를 늘려 큰 수용 영역을 얻으며 동시에 간결한 모델을 유지할 수 있는 방식을 제안한다. 실험 결과 제안하는 네트워크는 RDN과 비교 하였을 때 4배 확대 배율에서 평균적으로 PSNR 0.205dB만큼 낮지만 약 1.8배 더 빠른 처리속도, 약 10배 더 적은 파라미터의 수와 약 1.74배 더 적은 연산량을 갖는 것을 실험을 통해 확인하였다.

Balanced Attention Mechanism을 활용한 CG/VR 영상의 초해상화 (CG/VR Image Super-Resolution Using Balanced Attention Mechanism)

  • 김소원;박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.156-163
    • /
    • 2021
  • 어텐션(Attention) 메커니즘은 딥러닝 기술을 활용한 다양한 컴퓨터 비전 시스템에서 활용되고 있으며, 초해상화(Super-resolution)를 위한 딥러닝 모델에도 어텐션 메커니즘을 적용하고 있다. 하지만 어텐션 메커니즘이 적용된 대부분의 초해상화 기법들은 Real 영상의 초해상화에만 초점을 맞추어서 연구되어, 어텐션 메커니즘을 적용한 초해상화가 CG나 VR 영상 초해상화에도 유효한지는 알기 어렵다. 본 논문에서는 최근에 제안된 어텐션 메커니즘 모듈인 BAM(Balanced Attention Mechanism) 모듈을 12개의 초해상화 딥러닝 모델에 적용한 후, CG나 VR 영상에서도 성능 향상 효과를 보이는지 확인하는 실험을 진행하였다. 실험 결과, BAM 모듈은 제한적으로 CG나 VR 영상의 초해상화 성능 향상에 기여하였으며, 데이터 특징과 크기, 그리고 네트워크 종류에 따라 성능 향상도가 달라진다는 것을 확인할 수 있었다.

딥러닝 기반 Deraining 기법 비교 및 연구 동향 (Deep Learning-based Deraining: Performance Comparison and Trends)

  • 조민지;박예인;조유빈;강석주
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.225-232
    • /
    • 2021
  • Deraining is one of the image restoration tasks and should consider a tradeoff between local details and broad contextual information while recovering images. Current studies adopt an attention mechanism which has been actively researched in natural language processing to deal with both global and local features. This paper classifies existing deraining methods and provides comparative analysis and performance comparison by using several datasets in terms of generalization.