• Title/Summary/Keyword: attached textile

Search Result 103, Processing Time 0.025 seconds

A Study on the Development of Dance Sportswear with Cool-touch Function (냉감 기능성 댄스스포츠 웨어 개발에 관한 연구)

  • Jun, Mi-Hwa;Jang, Jeong-Ah;Koo, Young-Seok
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • This study helps develop cool-touch functional dance sportswear. We suggest a draft design for dance sportswear that chooses appropriate cool-touch functional materials based on an investigation of the changes of body surface temperature before and after exercise, the physical properties of cool-touch materials on the market, and the preference for cooling tools. The results are as follows. First, cool-touch functional sportswear products on the market utilize materials such as PCM, Delta fabric, high gauge fabric, and ice chips as well as incorporate functions such as UV block and eyelets for enhanced breathability. Polyester and polyurethane fibers are mainly used for cool-touch functional sportswear. Second, the neck area showed the highest surface temperatures (32.7℃ and 32.1℃) before and after exercise. Body surface temperatures measured after exercise were also lower than temperatures measured before exercise when wearing dance sportswear. Third, as for the physical properties of cool-touch materials, material 1 showed amaximum drying speed (130 min), material 3 the best moisture absorption speed (122 × 132 min), and material 4 the best thermal conductivity (0.013 7 w/m·K). Fourth, a draft design for a cool-touch functional dance sportswear was suggested, including a neckband made of removable soft PVC material on the neck area and applying material 4 in F1, B4, S2 and lower arm areas and material 1 in the armpit area. Deodorant tape was also attached to the armpit area for added comfort and antibacterial deodorant effect.

Preparation and Properties of Poly(vinylidene fluoride) Multilayer Films (Poly(vinylidene fluoride) 다층 필름의 제조 및 특성)

  • Son, Tae-Won;Kim, Jong-Hwan;Choi, Won-Mi;Han, Fei-Fei;Kwon, Oh-Kyeong
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.130-135
    • /
    • 2011
  • Along with the fast development of electronics, the demands of portable electronics and wireless sensors are growing rapidly. The need for self-powering materials capable of powering the electrical devices attached to them is increasing, The piezoelectric effect of polyvinylidene fluoride (PVDF) can be used for this purpose. PVDF has a special crystal structure consisting of a ${\beta}$-phase that can produce piezoelectricity. In this paper, multilayer PVDF films were fabricated to increase the ${\beta}$-phase content. A solution of 10% concentration N;N-dimethylacetamide (DMAc) in PVDF (PVDF/DMAc) was used to fabricate the films via spin coating technique with the following optimum process parameters: a spin rate of 850 rpm, spin time of 60 s, drying temperature of $60^{\circ}C$, and drying time of 30 min, Compared with single-layer PVDF films, the multilayer films exhibited higher ${\beta}$-phase content. The ${\beta}$-phase content of the films increased gradually with increasing number of layers until 4, Maximum ratio of ${\beta}$-phase content was 7.72.

Development of Smart Soccer Socks Using a Textile Stretch Sensor -Focused on Middle School Girls between the Ages of 14 and 15- (텍스타일형 스트레치 센서를 이용한 스마트 축구 양말 개발 -14~15세 여중생을 중심으로-)

  • Kim, Ji-seon;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.17-29
    • /
    • 2020
  • This study aimed to produce fiber stretch sensors for smart soccer socks to prevent injuries during training. A sensor was manufactured with stretchable fabric and tested to ensure convenience during training. In order to manufacture the fiber stretch sensor, a CNT dispersion solution was applied to an e-band and elastic polyester fabric, and the performance of the sensors was evaluated by a tensile test. Performance evaluation showed that both of the tested fabrics are excellent for this purpose. Both sensors were attached to socks to create prototype wearable devices, and an experiment was conducted to determine whether a resistance change accompanying relaxation and contraction of the gastrocnemius muscle could be detected. In order to accurately evaluate performance as a sensor, the fabric was stretched 20 times at low speeds of 1 Hz and 0.5 Hz. A change in resistance due to tension was observed, with both the E-band and the stretchable poly fabric showing high sensitivity and high reproducibility. Both can be used as relaxation/contraction sensors. Smart soccer socks were made using the two materials, and an evaluation was conducted. Tensile tests were done on the smart soccer socks; the tests were done 20 times per sock, and the sensor showed a stable resistance change between 30 and 40 ohms depending on the tension of the sensor. As a result, we confirmed that smart soccer socks with stretch sensors made of E-bands can measure changes in the gastrocnemius muscle.

Analysis of the Categorization of Wearable devices for Infants and Children by Function, Characteristics, and Improvements (영유아용 웨어러블 디바이스의 기능별 분류, 특성 및 개선점에 대한 분석)

  • Roh, Eui Kyung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.5
    • /
    • pp.655-666
    • /
    • 2021
  • This study aims to classify wearable devices for infants and children according to their function, and to analyze the types and attachment methods of the devices by function, operating system, characteristics of materials, and types of batteries, and to identify the points for improvement. Forty-eight types of devices investigated through previous studies and keyword research online were analyzed. Wearable devices for infants and children were classified according to their functions into wearable monitors, wearable thermometers, GPS trackers, and smart watches. Devices had different shapes and attachment methods according to their functions, and were mainly clothes or accessory types. The accessory type devices were attached to the body using velcro, clips, bands, or adhesives. Wearable monitors and thermometers mainly used Bluetooth to transmit data wirelessly, and location trackers used various combinations of 4G(LTE), 5G networks, GPS, Wi-Fi, and Bluetooth. Smartwatches had different functions depending on whether smart phones were linked to them or not. Wearable monitors and thermometers mainly used by infants provided material information, but other devices did not. These devices used rechargeable, replaceable, non-rechargeable or non-replaceable batteries. Wearable devices need to be improved to reduce the discomfort experienced by infants and children due to the attachment position, malfunction, skin trouble caused by materials, short time of use of batteries, version conflict and complexity with the device when linking with a smart phone, and non-operation when using Bluetooth.

Effects of Pressurization on Finger's Blood Velocity of Tendon and Muscle Areas in Forearm of 20's male (20대 남성의 아래팔 손목 건영역과 근육영역 가압이 손가락 혈류속도에 미치는 효과)

  • Kim, Nam Yim;Hong, Kyunghi
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.488-496
    • /
    • 2019
  • This study investigated if the proper pressure level on the wrist tendon area and muscle area of the lower arm are within the same range by examining the responses of blood flow and subjective evaluation. Subjects consisted of 18 males in their 20s, and the experimental bands were custom-made by applying size measurements of each subject. In the experiment, a total of 5 steps were selected by reducing 10 (Step 1) to 50 (Step 5)% from the original body size in the circumferential direction. Blood flow was measured with a sensor attached to the tip of the finger inside the right hand while sitting in a chair for 15 minutes. Blood velocity began to increase (0.82 kPa) when the wrist circumference around tendon area was reduced by 20% (Step 2) and reached its maximum (1.72 kPa) at Step 4. However, the preferred subjective pressure was 1.36 kPa, which was less than the maximum pressure value of 1.72 kPa for Step 4. Blood velocity began to increase when pressure on the muscle area was 1.38 kPa and reached its maximum at 2.16 kPa; however, the most preferred clothing pressure was 1.71 kPa. The results of this study showed that the appropriate pressure level was higher in the muscle area than in the wrist tendon of the lower arm and indicated that graduated compression is favorable.

Development of Sports Brassiere Pattern Using 3D Shaping Technology (3차원 쉐이핑 기술을 활용한 스포츠 브래지어 개발)

  • Kim, Soyoung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.480-487
    • /
    • 2019
  • This study used 3D technology to develop a multi-functional sports brassiere with increased comfort and fit that can be worn as a base layer during exercise or as underwear. A 75A size industrial lingerie figure was used to develop a standard pattern. 3D tools for scanning and pattern making, such as Vivid 910, Geomagic Design X, 2C-AN and Yuka CAD were used. The sports brassiere was designed as a tank top style with dual structure and linings attached to a pad utilized with a sport brassiere mold cup. 3D outer and lining's pattern was differently developed in consideration of the body's curvature with pad's shape and structure. Shoulder and neck part reduction rates were adjusted to increase the neck areas fit that considered the nude pattern's structure due to uncomfortableness felt by wearers who were uncomfortable with the neck areas fit on existing brand products. The reduction rate was also set differently on each part. For example, the reduction rate on outer side panel was set strongly to increase the breast's volume. Two products, developed by a 3D sports brassiere and previously released product, were worn on 8 subjects in their 20's to evaluate fit, comfort, and purchase preferences. The evaluation proved that newly developed 3D products were superior to comparative products. The results of the clothing pressure measurement indicate that the newly developed sports brassiere's front part had less pressure on upper bust and shoulder areas compared to comparative products as well as showed less pressure on the back side, which shows improved wearing comfort compared to comparative products.

Design Development Process for Clothing of Upper Limb Assistive Wearable Soft Robot (상지 보조 소프트로봇의 의복화를 위한 디자인 개발 프로세스)

  • Hong, Yuhwa;Park, Juyeon;Nam, Yun Ja;Park, Daegeun;Cho, Kyu-Jin;Kim, Youn Joo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2021
  • This study proposes a design process for an upper limb assistive wearable soft robot that will enable the development of a clothing product for an upper limb assistive soft robot. A soft robot made of a flexible and soft material that compensates for the shortcomings of existing upper limb muscle strength assistive devices is being developed. Consequently, a clothing process of the upper limb assistive soft robot is required to increase the possibility of wearing such a device. The design process of the upper limb auxiliary soft robot is presented as follows. User analysis and required performance deduction-Soft robot design-upper limb assistive wearable soft robot prototype design and production-evaluation. After designing the clothing according to the design process, the design was revised and supplemented repeatedly according to the results of the clothing evaluation. In the post-production evaluation stage, the first and second prototypes were attached to actual subjects, and the second prototype showed better results. The developed soft robot evaluated if the functionality as a clothing function and the functionality as the utility of the device were harmonized. The convergence study utilized a process of reducing friction conducted through an understanding and cooperation between research fields. The results of this study can be used as basic data to establish the direction of prototype development in fusion research.

Development of Bib Pants Design and Pattern for Cycling Smart Wear (사이클링 스마트웨어 제작을 위한 빕 팬츠 디자인 및 패턴 개발)

  • Yunyoung, Kim;Byeongha, Ryu;Woojae, Lee;Kikwang, Lee;Rira, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.91-104
    • /
    • 2022
  • In this study, a cycling smart wear for measuring cycling posture and motion was developed using a three-dimensional motion analysis camera and an IMU inertial sensor. Results were compared according to parts to derive the optimal smart device attachment location, enabling correct posture measurement and cycle motion analysis to design a pattern. Conclusions were as follows: 1) 'S-T8' > 'S-T10' > 'S-L4' was the most significant area for each lumbar spine using a 3D motion analysis system with representative posture change (90°, 60°, 30°) to derive incisions and size specifications; 2) the part with the smallest relative angle change among significant section reference points during pattern design was applied as a reference point for attaching a cycling smart device to secure detachable safety of the device. Optimal locations for attaching the cycling device were the "S-L4" hip bone (Sacrum) and lumbar spine No. 4 (Lumbar 4th); 3) the most suitable sensor attachment location for monitoring knee induction-abduction was the anatomical location of the rectus femoris; 4) a cycling smart wear pattern was developed without incision in the part where the sensor and electrode passed. The wearing was confirmed with 3D CLO. This study aims to provide basic research on exercise analysis smart wear, to expand the smart cycling area that could only be realized with smart devices and smart watches attached to current cycles, and to provide an opportunity to commercialize it as cycling smart wear.

A Study on the Functional Design Elements for Children's Ski Pants (아동용 스키 팬츠의 기능적 설계요소 연구)

  • Kyungok Kim;Jongsuk Chun
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • This study identified design elements of the functions required for children's ski pants. Data for this study were collected through questionnaire surveys conducted among children's ski instructors and children's sportswear developers. Five functionalities of children's skiwear were evaluated: mobility, stability, comfort, protection, and convenience. A total of 25 functional design elements related to the patterns, design details, and physical characteristics of fabrics for ski garments, were evaluated. The results of this study are as follows. First, children's sportswear developers evaluated that the pattern elements were important. Most of the pattern design elements highly related to mobility. Children's ski instructors' appraisal was that the height of the back waist was the important feature. Second, regarding the design details, children's ski instructors evaluated the size adjustment function and ventilation system as important elements. Many design detail elements were highly related in respect of stability, comfort, protection, and convenience. Third, the physical characteristics of fabric were strongly associated with mobility, comfort, and protection. As regards the physical characteristics of fabric, children's ski instructors valued anti-fouling highly, but children's sportswear developers attached more importance to the weight of the fabric. The results of this study will be useful in designing functional ski pants for children of elementary and intermediate ski levels. Since there may be limitations related to the ski level and age of children wearing ski pants, it is suggested that follow-up studies according to various groups of the ski pant wearers should be done.

Upcycling Beauty Design Using Waste (폐기물을 활용한 업사이클링 뷰티디자인)

  • Ming-Yang Cheng;Koh-Mi Cho
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.732-738
    • /
    • 2023
  • This study delves into the realm of upcycling beauty design by repurposing discarded CDs, magazines, and fabrics. The study outlines a meticulous process for transforming waste into beauty designs. We created three upcycling beauty design works as part of this investigation. The first creation, called Silver Leaf, uses the silver section of CDs to craft leaves and stems. Achromatic colors are used as makeup to achieve cyber-inspired imagery. After carrying out silver-gray eye makeup, the lips were completed by affixing a CD component. The second creation is a firebird crafted by cutting or folding fashion magazines to create essential items. The colorful firebird image was completed using vivid color makeup of shades such as red and yellow. After proceeding with red eye makeup, the lips were completed by cutting and pasting magazine cutouts. The third piece is a spring flower, which involved selectively cutting lace patterns to complete a beauty design extending from head to face. The colors are spring-themed and encompass pink, yellow, and blue. Pink, blue, and green eyeshadows were applied on the lace, attached from head to face, chest, and lips. This study advocates for the prospect of upcycling beauty design using sustainable materials by repurposing waste resources. It also introduces the possibilities of creative activities in this field through upcycling. The study aims to play a role in changing the perception of environmental conservation, a concern of our times, through the use of sustainable resources.