• Title/Summary/Keyword: attached bacteria

Search Result 155, Processing Time 0.025 seconds

Study on the Ecological Restoration of Rock-exposed-cut-slope by Natural Topsoil Restoration Methods : In Case of Won-Ju Experiment (자연표토 복원공법에 의한 암절취비탈면의 생태적 복원에 관한 연구 : 원주사례지역을 중심으로)

  • Nam, Sang-Joon;Suk, Won-Jin;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.54-63
    • /
    • 1999
  • This study was conducted to suggest the ecological restoration and environmentally friendly revegetation technology for the rock-exposed cut-slopes by the Natural Topsoil Restoration Methods (NTRM) with the following restoration objectives; (1) prevention or reduction of wind and water erosion, (2) provision of food and cover for variety of animal species, (3) improvement of the visual or aesthetic quality of the disturbed slopes. On Nov. in 1995, the 5cm thick layer of artificial soil and 2cm thick layer of straw-mulching was attached at rock-exposed cut-slopes by NTRM without using anchor wire and anchor pin. The main results during four years surveying on the ground-coverage effect, plant growth, species diversity and importance values were summarized as follows. 1. Artificial soil attached at rock exposed cut-slopes was not eroded until recovered by tree and herbaceous vegetation in spite of not using anchor wire and anchor pin. Also it shows low soil hardiness and has almost the same amount of bacteria and fungi with in surrounding natural topsoil. 2. In 'combination for the woody vegetation', Lespedeza cyrtobotrya, Albizzia julibrissin, Rhus chinensis, Indigofera pseudo-tinctoria occupied upper layer vegetation. Since three years after seeding, Indigofera pseudo-tinctoria had overwhelmed the other woody plants and cool season foreign grasses, Erigeron canadensis, Taraxacum mongolicum, Commelina communis, Arundinella hirta (Thunberg) and Oenothera erythrosepala grows at lower part of the vegetation, 3. The heights of the Rhus chinensis grows 1.8m, Indigofera pseudo-tinctoria 2.0m, so it seems that the objectives of woody vegetation with native plants could be accomplished. 4. After 4 years later after seeding in 'combination for the herbaceous vegetation', the most dominant plant was Indigofera pseudo-tinctoria, the next was in order of cool-season grasses, Taraxacum mongolicum, Erigeron canadensis, lxeris dentata (Thunberg), Oenothera erythrosepala, Arundinella hirta (Thunberg). The diversity index in 'combination for woody vegetation' was higher than that in 'combination for the herbaceous vegetation'. The tendency of the intrusion of secondary succession plants was more effective in 'combination for the herbaceous vegetation' than in 'combination for the woody vegetation'.

  • PDF

Morphological Changes Associated with the Antibacterial Action of Silver Ions against Bovine Mastitis Pathogens (은 이온의 항균효과에 대한 소 유방염 원인균의 형태학적 변화)

  • Kang, Seog-Jin;Seol, Jae-Won;Hur, Tai-Young;Jung, Young-Hun;Choe, Chang-Yong;Park, Sang-Youel
    • Journal of Veterinary Clinics
    • /
    • v.28 no.6
    • /
    • pp.576-580
    • /
    • 2011
  • Silver has potent antibacterial activity against a variety of bacteria while maintaining low toxicity in mammalian cells. This study was conducted to investigate the possible mechanism underlying the bactericidal effects of silver ions against bovine mastitis pathogens using electron microscopy. We used two different bacterial strains, Escherichia coli and Staphylococcus aureus, which are primarily responsible for the majority of bovine mastitis cases. Interaction between the bacteria and silver ions (50 ${\mu}g/mL$, 2 hours) were studied using energy-filtering transmission electron microscopy (EFTEM). EFTEM images showed that E. coli and S. aureus cells treated with the silver ions had distorted plasma membranes, silver ions attached to the outer membranes, scattered electron-light material, and leakage of cell contents from disrupted cell membranes.

Bacterial Abundances and Enzymatic Activities in the Pore Water of Media of Artificial Floating Island in Lake Paro (파로호에 설치된 인공식물섬 식생기반재의 공극수에서 세균 분포와 체외효소활성도)

  • Kim, Yong-Jeon;Hur, Jai-Kyou;Nam, Jong-Hyun;Kim, In-Seon;Choi, Kyoung-Suk;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • For restoration of disturbed ecosystem in Lake Paro, artificial floating island (AFI) was installed. Even though the lake water was oligo-mesotrophic, the macrophytes, such as Iris ensata, Iris pseudoacorus, Phragmites communis were growing well in the rubberized coconut fiber media. For elucidating this process, total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase of pore water of media and lake water were analyzed. The average of total bacterial numbers, active bacterial numbers and exoenzymatic activities of ${\beta}-glucosidase$ and phosphatase were $28.6{\times}10^{6}\;cells/ml,\;22.7{\times}10^{6}\;cells/ml,\;452.9nM/L/hr,\;and\;16381.9nM/L/hr$ which were 10, 15, 22 and 38 times higher than those of lake water, respectively. Moreover, the total phosphorus and total nitrogen concentration of media showed high values of 0.82 mg/L and 7.0 mg/L, respectively, while those of lake water 0.07 mg/L and 2.3 mg/L. This results suggest that the bacteria was playing an important role for restoration of disturbed ecosystem with newly created microbial ecosystem in media of artificial floating island.

Quality Characteristics of Unshiu Orange and Pear Packaged with Paper Incorporated with Antimicrobial Agents (항균소재를 함유한 포장재로 포장한 밀감과 배의 저장중 품질 특성 변화)

  • Park, Woo-Po;Jung, Jun-Ho;Cho, Sung-Hwan;Kim, Chul-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1715-1719
    • /
    • 2004
  • In order to help the preservation of the unshiu orange and pear, antimicrobial paper incorporating grapefruit seed extract and zeolite was applied to pack fruits. Unshiu orange was packed in a box (24${\times}$24${\times}$22 cm) attached with antimicrobial paper and then stored respectively at l$0^{\circ}C$. Pears were wrapped individually before storage at l$0^{\circ}C$. During the storage, weight loss, pH, total acidity, soluble solid content, microbial load and decay were measured as quality indices. Steady pH increase in unshiu orange was observed to slightly decrease total acidity during the storage with little difference between the packaging treatments. The microbial loads of total aerobic bacteria, and yeast/mold counts were suppressed during storage by the antimicrobial paper packaging, which also contributed to reducing the decayed unshiu orange. Limited reduction of total aerobic bacteria and yeast/mold counts was observed only for initial storage period for the pears wrapped with 9 and 12% antimicrobial agent-added papers. Antimicrobial paper was useful for the reduction of microbial load in unshiu orange and pear without other quality deterioration.

Characteristics of Community-Level Physiological Profile (CLPP) of Biofilm Microorganisms Formed on Different Drinking Water Distribution Pipe Materials (수도관 재질에 따른 생물막 형성 미생물의 Community-Level Physiological Profile(CLPP) 특성)

  • Park, Se-Keun;Lee, Hyun-dong;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2006
  • This study investigated the physiological characteristics of biofilm microorganisms formed onto the different drinking water distribution pipe surfaces. The simulated drinking water distribution pipe system which had several PVC, STS 304, and GS coupons was operated at flow velocity of 0.08 m/sec (Re 1,950) and 0.28 m/sec (Re 7,300), respectively. At velocity of 0.08 m/sec, the number of viable heterotrophic bacteria in the biofilm over the 3 months of operation averaged $3.3{\times}10^4$, $8.7{\times}10^4$, and $7.2{\times}10^3CFU/cm^2$ for PVC, STS, and GS surfaces, respectively. The number of attached heterotrophic bacteria averaged $1.4{\times}10^3$, $5.6{\times}10^2$, and $6.5{\times}10^2CFU/cm^2$ on PVC, STS, and GS surfaces at the system with relatively high flow velocity of 0.28m/sec. The changes of physiological profile of biofilm-forming microorganisms were characterized by community-level assay that utilized the Biolog GN microplates. Biofilms that formed on different pipe surfaces displayed distinctive patterns of community-level physiological profile (CLPP), which reflected the metabolic preference for different carbon sources and/or the utilization of these carbon sources to varying degrees. The CLPP patterns have shown that the metabolic potential of a biofilm community was different depending on the pipe material. The effect of the pipe material was also characterized differently by operation condition such as flow rate. At flow velocity of 0.08 m/sec, the metabolic potential of biofilm microorganisms on GS surface showed lower levels than PVC and STS biofilms. For biofilms on pipe material surfaces exposed to water flowing at 0.28 m/sec, the metabolic potential was in order of PVC>GS>STS. Generally, the levels of the bacterial biofilm's metabolic potentials were shown to be notably higher on pipe surfaces exposed to water at 0.08 m/sec when compared to those on pipe surfaces exposed to water at 0.28 m/sec.

In vitro and in vivo Antibacterial Activities and Pharmacokinetics of 8-Fluorociprofloxacin and Ciprofloxacin (8-Fluorociprofloxacin과 Ciprofloxacin의 시험관내 및 생체내 항균효과와 약물동태의 비교)

  • 최경업;정용환;김제학
    • YAKHAK HOEJI
    • /
    • v.37 no.3
    • /
    • pp.235-242
    • /
    • 1993
  • 8-Fluorociprofloxacin(8-FCP) is an investigational quinolone derivative that is substituted with fluorine at the C-8 position of ciprofloxacin(CP). It was found that the in vitro activity of 8-FCP against Gram(+) bacteria was more potent that of CP, but the opposite against Gram(-) bacteria was true. However, 8-FCP showed better in vivo efficacy than CP against representative Gram(-) organisms, E. coli and K pneumoniae. In an attempt to seek for factors causing this discrepancy in the antibacterial activities, a comparative pharmacokinetic study of 8-FCP and CP was conducted in mice and rats treated either intravenously or orally at a single dose of 30 mg/kg. The pharmacokinetic parameters in mice were as follows; the mean peak serum concentrations(C$_{max}$) following i.v. and oral doses were 12.4 and 5.3 $\mu\textrm{g}$/ml for 8-FCP, and 9.5 and 2.5 $\mu\textrm{g}$/ml for CP, respectively. The terminal half-life(t$_{1/2\beta}$) was 72.9 min for 8-FCP, and 98.2 min for CP, and the oral bioavailability(F) was 89.9% for 8-FCP, and 50.5% for CP. In rats, the mean ($\pm$SD) $C_{max}$ after i.v. administration were 11.6$\pm$1.6 $\mu\textrm{g}$/ml for 8-FCP, and 10.2$\pm$1.3 $\mu\textrm{g}$/ml for CP, whereas oral administration produced $C_{max}$ of 5.9$\pm$1.8 $\mu\textrm{g}$/ml for 8-FCP and 1.1$\pm$0.9 $\mu\textrm{g}$/ml for CP, respectively. The t$_{1/2\beta}$ was 67.9$\pm$8.4 min for 8-FCP, and 76.4$\pm$7.2 min for CP. The F was 88.6$\pm$6.3% for 8-FCP, and 40.7$\pm$6.5% for CP. Marked differences were observed between the two quinolones in the $C_{max}$ and the area under the concentration-time curve obtained after oral administration in mice and rats. The extent of 8-FCP absorption in both mice and rats was approximately 2-fold higher than that of CP, suggesting that the fluorine atom attached to C-8 plays an important role in facilitating oral absorption from the gastrointestinal tract.

  • PDF

Adhesion and Biofilm Formation Abilities of Bacteria Isolated from Dental Unit Waterlines (치과용 유니트 수관에서 분리한 세균의 부착 및 바이오필름 형성 능력)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • The purpose of our study is to compare the adhesion and biofilm formation abilities of isolates from water discharged from dental unit waterlines (DUWLs). Bacteria were isolated from a total of 15 DUWLs. Twelve isolates were selected for the experiment. To confirm the adhesion ability of the isolates, each isolate was attached to a glass coverslip using a 12-well plate. Plates were incubated at $26^{\circ}C$ for 7 days, and the degree of adhesion of each isolate was scored. To verify the biofilm formation ability of each isolate, biofilms were allowed to form on a 96-well polystyrene flat-bottom microtiter plate. The biofilm accumulations of all isolates formed at $26^{\circ}C$ for 7 days were identified and compared. A total of 56 strains were isolated from 15 water samples including 12 genera and 31 species. Of the 56 isolates, 12 isolates were selected according to the genus and used in the experiment. Sphingomonas echinoides, Methylobacterium aquaticum, and Cupriavidus pauculus had the highest adhesion ability scores of +3 among 12 isolates. Among these three isolates, the biofilm accumulation of C. pauculus was the highest and that of S. echinoides was the third-most abundant. The lowest biofilm accumulations were identified in Microbacterium testaceum and M. aquaticum. Most isolates with high adhesion ability also exhibited high biofilm formation ability. Analysis of adhesion and biofilm formation of the isolates from DUWLs can provide useful information to understand the mechanism of DUWL biofilm formation and development.

Seed-borne Pathogenic Bacterium Interact with Air-borne Plant Pathogenic Fungus in Rice Fields

  • Jung, Boknam;Park, Jungwook;Kim, Namgyu;Li, Taiying;Kim, Soyeon;Bartley, Laura E.;Kim, Jinnyun;Kim, Inyoung;Kang, Yoonhee;Yun, Ki-Hoon;Choi, Younghae;Lee, Hyun-Hee;Lee, Kwang Sik;Kim, Bo Yeon;Shon, Jong Cheol;Kim, Won Cheol;Liu, Kwang-Hyeon;Yoon, Dahye;Kim, Suhkman;Ji, Sungyeon;Seo, Young Su;Lee, Jungkwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.33-33
    • /
    • 2018
  • Air-borne plant pathogenic fungus Fusarium graminearum and seed-borne plant pathogenic bacterium Burkholderia glumae are cause similar disease symptoms in rice heads. Here we showed that two pathogens frequently co-isolated in rice heads and F. graminearum is resistant to toxoflavin produced by B. glumae while other fungal genera are sensitive to the toxin. We have tried to clarify the resistant mechanism of F. graminearum against toxoflavin and the ecological reason of co-existence of the two pathogens in rice. We found that F. graminearum carries resistance to toxoflavin as accumulating lipid in fungal cells. Co-cultivation of two pathogens resulted in increased conidia and enhanced chemical attraction and attachment of the bacterial cells to the fungal conidia. Bacteria physically attached to fungal conidia, which protected bacterium cells from UV light and allowed disease dispersal. Chemotaxis analysis showed that bacterial cells moved toward the fungal exudation compared to a control. Even enhanced the production of phytotoxic trichothecene by the fungal under presence of toxoflavin and disease severity on rice heads was significantly increased by co-inoculation rather than single inoculation. This study suggested that the undisclosed potentiality of air-born infection of bacteria using the fungal spores for survival and dispersal.

  • PDF

Biological Dechlorination of Chlorinated Ethylenes by Using Bioelectrochemical System (생물전기화학시스템을 이용한 염화에틸렌의 생물학적 탈염소화)

  • Yu, Jaecheul;Park, Younghyun;Seon, Jiyun;Hong, Seongsuk;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.304-311
    • /
    • 2012
  • Chlorinated ethylenes such as perchloroethylene (PCE) and trichloroethylene (TCE) are widely used as industrial solvents and degreasing agents. Because of improper handling, these highly toxic chlorinated ethylenes have been often detected from contaminated soils and groundwater. Biological PCE dechlorination activities were tested in bacterial cultures inoculated with 10 different environmental samples from sediments, sludges, soils, and groundwater. Of these, the sediment using culture (SE 2) was selected and used for establishing an efficient PCE dechlorinating enrichment culture since it showed the highest activity of dechlorination. The cathode chamber of bioelectrochemical system (BES) was inoculated with the enrichment culture and the system with a cathode polarized at -500 mV (Vs Ag/AgCl) was operated under fed-batch mode. PCE was dechlorinated to ethylene via TCE, cis-dichloroethylene, and vinyl chloride. Microbial community analysis with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that the microbial community in the enrichment culture was significantly changed during the bio-electrochemical PCE dechlorination in the BES. The communities of suspended-growth bacteria and attached-growth bacteria on the cathode surface are also quite different from each other, indicating that there were some differences in their mechanisms receiving electrons from electrode for PCE dechlorination. Further detailed research to investigate electron transfer mechanism would make the bioelctrochemical dechlorination technique greatly useful for bioremediation of soil and groundwater contaminated with chlorinated ethylenes.

Effect of Ozone and Gamma Irradiation for Eliminating the Contaminated Microorganisms in Food Materials for Kimchi Manufacturing (김치 원부재료의 오염 미생물 제거를 위한 오존 및 감마선 조사의 영향)

  • Lee, Kyong-Haeng;Cho, Chae-Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.1070-1075
    • /
    • 2006
  • Food materials for kimchi manufacturing were treated by ozone or gamma irradiation to reduce the number of contaminated microorganisms before the manufacturing of kimchi. Counts of total aerobic bacteria, yeast and mold were $10^6{\sim}10^7 and 10^3{\sim}10^4\;CFU/g$ in the food materials, respectively. After treatment with ozone $(3{\sim}6\;ppm), the total aerobic bacteria were reduced to 1 log cycle or more, in a dose-dependent manner. In comparison, gamma irradiation was superior to ozone treatment. Especially, irradiation of 5 kGy fully eliminated the yeast and mold attached in the food materials for kimchi manufacturing. The contents of ascorbic acid and total and reducing sugar were not affected by ozone or gamma irradiation. Taken together, it is suggested that microorganisms contaminated on materials for kimchi manufacturing could be substantially reduced by ozone (up to 6 ppm) and gamma irradiation (up to 5 kGy), without effect on the nutritional contents.