• 제목/요약/키워드: atomization

검색결과 1,362건 처리시간 0.027초

다공 스로틀밸브 장착 가솔린기관의 성능 특성에 관한 연구 (A Study on the Characteristics of Gasoline Engine Performance Equipped with Perforated Throttle Valve)

  • 조병옥;이창식
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.50-56
    • /
    • 1996
  • In an fuel injection type gasoline engine, atomization of fuel droplet and mixture formation process are very important to understand engine combustion efficiency, and also has influence directly on the decision of engine performance and pollutant emission. In this study, perforated throttle valve instead of solid type throttle valve was developed and equipped to an SPI engine to promote secondary atomization and good droplet-air mixture formation. From the engine performance lest. it was verified that the case of perforated valve kas more advantages in each experimental parameters such as in cylinder gas pressure, mass burnt ratio, fuel consumption rate, and pollutant emission characteristics than that of solid one equipped. No matter what the same perforated valve, there are some distinct results in engine performance characteristics according to the perforate ratio.

  • PDF

가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성 (Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine)

  • 이창식;이기형;최수천;권상일
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF

외부혼합형 음속노즐을 사용한 2유체 미립화의 분무특성 (Spray characteristics of twin-fluid atomization using external-mixing sonic nozzles)

  • 박병규;이준식
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.132-139
    • /
    • 1997
  • Spray characteristics of external mixing sonic twin-fluid atomization nozzles are investigated experimentally. Particle sizes are measured by the Fraunhofer diffraction method using the Malvern particle analyzer, and their radial distributions are obtained using the tomographical transformation technique. The spatial distribution of SMD shows that the drop size increases in the radial direction at a fixed liquid flow rate, and the distribution is getting uniform rapidly as the atomizing gas pressure increases. The SMD decreases as the liquid flow rate increases at a fixed GLR. It is found that the atomization efficiency of the flush type sonic nozzle is superior to that of protrusion type. The effect of laser beam diameter of the particle analyzer on the spatial SMD distribution is minor at present experimental conditions.

가스분무 공정에 의한 고강도 과공정 Al-Si 합금 분말의 제조 및 특성 연구 I. 분말 제조 및 성형성 (Fabrication and Properties of High Strength Hypereutectic Al-Si Powder by Gas Atomization Process I. Powder Production and Compressibility)

  • 김용진;김진천
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.296-302
    • /
    • 2005
  • In order to improve mechanical properties, the hypereutectic Al-20 wt%Si based prealloy powder was prepared by gas atomization process. Microstructure and compressibility of the atomized Al-Si powder were investigated. The average powder size was decreased with increasing the atomization gas pressure. Size of primary Si particles of the as-atomized powder was about $5-8\;\mu{m}$. The as-atomized Al-Si powder such as AMB 2712 and AMB 7775 to increase compressibility and sinterability. Relative density of the mixed powder samples sintered at $600^{\circ}C$ was reached about 96% of a theoretical density.

Spray and Atomization Technologies in Pesticides Application: A Review

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.1-13
    • /
    • 2001
  • In the pesticides sprays, spray and atomization technologies to increase the deposition and reduce the drift are briefly reviewed. Further research is needed to deduce a measure of drift risk in sprays with different structures, velocity profiles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target. In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying included air in the air inclusion techniques are required. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift.

  • PDF

디젤 엔진 분무의 액적 미립화 모델 및 벽면 충돌 모델에 관한 연구 (Modeling of Liquid Droplet Atomization and Spray Wall Impingement of Diesel Sprays)

  • 김홍석;성낙원
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.69-81
    • /
    • 1999
  • In this research computational methods for the droplet atomization and spray wall impingement are studied for the non-evaporating diesel fuel spray. The TAB(Taylor Analogy Breakup) model and Wave model are compared with experiments in order to describe droplet atomization process. The Watkins model and O'Rourke model are compared to simulate the spray wall impingement. As a result, It is found that the application of the Wave model has a good agreement with the experimental data in the case of high pressure injection. With regard to wall Impingement phenomena, it is found that the Watkins model is appropriate to the high temperature cylinder wall condition, while the O'Rourke model is appropriate to cold starting problem.

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining(II)

  • Hwang Joan;Hwang Duk-Chul;Chung Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.3-7
    • /
    • 2005
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling and lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor. Cutting fluid's aerosol via atomization process can generate human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol of which particle size less than 10 micron appears near working zone under typical operation conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided as a basis of environmental impact analysis for environmental consciousness.

저압 분사시 캐비테이션에 의한 단공 노즐의 미립화 향상 (The Enhacned Atomization of Single Hole Nozzle by Cavitation at The Low Pressure Injection)

  • 손종원;차건종;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.952-957
    • /
    • 2001
  • The objectives of this investigation were to obtain an excellent spray by cavitation under the low injection pressure. When cavitation occurs in the nozzle hole, the atomization of the liquid jet enhanced considerably. In this experiments, a acrylic nozzle made the gap and installed the bypass in the nozzle hole was used to enhance the atomization of the liquid jet at the low injection pressure. The liquid flow in the nozzle hole was photographed by a transmitted light using a micro flash. The spray angle was measured macroscope images of PMAS and the Sauter mean diameter was measured PDA system. To measure the pressure of the nozzle hole, pressure transducer was used. The results of this study indicated that enhanced atomization of the liquid jet at the low injection pressure was obtained by making the gap and installing the bypass at the single hole nozzle.

  • PDF

초음파(超音波) 에너지 부가(附加) 저 점도 바이오디젤 혼합연료(混合燃料)의 미립화 특성(微粒化 特性)에 관한 연구(硏究) (A Study on the Atomization Characteristics of the Ultrasonic-Energy-Added Low Viscosity Biodiesel Blended Fuel)

  • 송용식;김용철;류정인
    • 한국분무공학회지
    • /
    • 제9권3호
    • /
    • pp.1-7
    • /
    • 2004
  • This experiment was undertaken to investigate the atomization characteristics of the low viscosity biodiesel blended fuel and ultrasonic energy added one. Test fuels were conventional diesel fuel and biodiesel fuel. We compared to the characteristics of viscosity and surface tension, SMD between low viscosity biodiesel blended fuel and ultrasonic energy added one. Sauter mean diameter was measured under the variation of the spray distance. Viscosity and surface tension was measured under the variation of the time trace. To measure the droplet size, we used the Malvern system 2600C. Droplet size distribution was analyzed from the result data of Malvern system. Through this experiment, we found that the condition of the ultrasonic energy added situation had smaller Sauter mean diameter of droplet, viscosity and surface tension than that of the conventional situation.

  • PDF

교류 고전압을 이용한 대전액체의 전기수력학적 미립화에 관한 실험적 연구 (An Experimental Study on the Electrohydrodynamic Atomization of Conducting Liquid Using the AC High Voltages)

  • 성기안
    • 한국분무공학회지
    • /
    • 제13권2호
    • /
    • pp.73-78
    • /
    • 2008
  • An experimental study was performed to explore the drop formation and atomization characteristics in electrohydrodynarnic atomization with flow rate, power supply, voltage frequency, and nozzle size. A basic electrohydrodynarnic atomizer equipment was developed for the analysis of spray visualization and tested for the exploration of relationship between several experimental parameters. In results, the varicose wave had been taken place and the small droplets had been generated less than outer diameter of nozzle on the conditions of 25G of nozzle, flow rate of 2 mL/min, and applied frequency of 50kV at AC power over 5kV voltage. The whipping motion had been grown at applied frequency of 400kV and AC power around 2kV voltage

  • PDF