• Title/Summary/Keyword: atomic processes and interactions

Search Result 19, Processing Time 0.025 seconds

Investigation of the Corrosive Chemical Interaction on Antireflective Layers of Solar Cell Multilayers

  • Choe, Seong-Hyeon;Kim, Seon-Mi;Jin, Suk-Yeong;Park, Jeong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.187-187
    • /
    • 2011
  • Nowadays, the issue of solar cell durability in local weather and environment is a crucial issue. Above all, surface corrosion on solar cell multilayers is a major factor that determines the durability of commercial solar cells; corrosive chemical interactions between air, humidity and chemical species and solar cell multilayers can unfavorably affect the durability. Here, we study microscopic and spectroscopic surface techniques to investigate the corrosive interaction on the antireflective layers of solar cell multilayers under various conditions such as acid, base, constant temperature and humidity. Surface morphology and adhesion force were characterized with atomic force microscopy before and after chemical treatment. Chemical composition, and transmittance factors were studied with X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy, respectively. Based on these studies, we suggest the dominant factors in the corrosive chemical processes, and their influences on the structural, compositional, and optical properties of the antireflective layers.

  • PDF

Evaluation of availability of nuclear power plant dynamic systems using extended dynamic reliability graph with general gates (DRGGG)

  • Lee, Eun Chan;Shin, Seung Ki;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.444-452
    • /
    • 2019
  • To assess the availability of a nuclear power plant's dynamic systems, it is necessary to consider the impact of dynamic interactions, such as components, software, and operating processes. However, there is currently no simple, easy-to-use tool for assessing the availability of these dynamic systems. The existing method, such as Markov chains, derives an accurate solution but has difficulty in modeling the system. When using conventional fault trees, the reliability of a system with dynamic characteristics cannot be evaluated accurately because the fault trees consider reliability of a specific operating configuration of the system. The dynamic reliability graph with general gates (DRGGG) allows an intuitive modeling similar to the actual system configuration, which can reduce the human errors that can occur during modeling of the target system. However, because the current DRGGG is able to evaluate the dynamic system in terms of only reliability without repair, a new evaluation method that can calculate the availability of the dynamic system with repair is proposed through this study. The proposed method extends the DRGGG by adding the repair condition to the dynamic gates. As a result of comparing the proposed method with Markov chains regarding a simple verification model, it is confirmed that the quantified value converges to the solution.

Comparative Homology Modeling and Ligand Docking Study of Human Catechol-O-Methyltransferase for Antiparkinson Drug Design

  • Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1695-1700
    • /
    • 2005
  • Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an S-adenosylmethionine (SAM, AdoMet) dependent methyltransferase, and is related to the functions of the neurotransmitters in various mental processes, such as Parkinson’s disease. COMT inhibitors represent a new class of antiparkinson drugs, when they are coadministered with levodopa. Based on x-ray structure of rat COMT (rCOMT), the three dimensional structure of human COMT (hCOMT) was constructed by comparative homology modeling using MODELLER. The catalytic site of these two proteins showed subtle differences, but these differences are important to determine the characterization of COMT inhibitor. Ligand docking study is carried out for complex of hCOMT and COMT inhibitors using AutoDock. Among fifteen inhibitors chosen from world patent, nine models were energetically favorable. The average value of heavy atomic RMSD was 1.5 $\AA$. Analysis of ligand-protein binding model implies that Arg201 on hCOMT plays important roles in the interactions with COMT inhibitors. This study may give insight to develop new ways of antiparkinson drug.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation))

  • Park, Jung-Wook;Park, Chan-Hee;Yoon, Jeoung Seok;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.573-590
    • /
    • 2020
  • This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.

Molecular gas properties under ICM pressure: A Case study of NGC4402

  • Hahn, You-Jin;Chung, Ae-Ree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2012
  • Interactions between the galactic interstellar medium (ISM) and the intra cluster medium (ICM) are believed to be one of the main processes affecting galaxy evolution in cluster environments. The aim of our research is to study the molecular gas properties of a galaxy under the ICM pressure in the cluster environment. It has been well known that cluster galaxies are deficient in atomic hydrogen gas (HI gas) compared to their field counterparts and now there is much evidence that low density ISM is being removed by ram pressure due to ICM wind. Meanwhile, no significant molecular gas deficiency of the cluster galaxy population has been found yet they show overall lower star formation rate than galaxies in the field, and it is still puzzling how the star formation could decrease without stripping of dense molecular gas. To address this issue, we probe the detailed molecular gas properties of NGC 4402, located near the cluster center, as part of a study of four spiral galaxies in the Virgo Cluster. NGC 4402 is well known undergoing ram pressure stripping with a truncated HI disk($D_{HI}/D_{opt}$ - 0.75 and only 36% of HI gas compare to field galaxies of a similar size) and a disturbed gas morphology. Comparing the high resolution 12CO and 13CO data of NGC 4402 from the Sub Millimeter Array (SMA) with existing other wavelength data, we probe the spatial distribution and a physical condition of molecular gas under strong ICM pressure. We discuss the star formation activity might have been altered and hence how the global color of NGC4402 would change in the future.

  • PDF

CHARGE EXCHANGE EFFECTS IN COLLISIONAL IONIZATION EQUILIBRIUM OF C, N, AND O IONS (탄소, 질소 및 산소의 충돌이온화평형에서의 전하교환 효과)

  • Seon, Kwang-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2004
  • The charge exchange (or transfer) due to collision with hydrogen has important effects on the physical characteristics of astrophysical plasma. In this paper, collisional ionization equilibrium in the temperature range of ${\sim}1,000--80,000K$ are investigated for C, N, and O ions including the effects of charge exchange. The calculated ionic abundance fractions are compared with those of previous works. The ionic abundance fractions calculated in the paper can be used in understanding the spectroscopic properties of warm interstellar medium. It is also found that the ratio between the degree of ionization of oxygen and that of hydrogen shows big difference with the previously well-known result for the environment where the collisional ionization is not important. This implies that investigations on the collisional ionization in the warm interstellar medium are required.

Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versus Apical (Y2L2Pt···L') Interaction

  • Park, Jong-Keun;Kim, Bong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1405-1417
    • /
    • 2006
  • The geometrical structures, potential energy surfaces, and energetics for the ligand exchange reactions of tetracoordinated platinum $(PtY_2L_2\;:\;Y,\;L=Cl^-,\;OH^-,\;OH_2,\;NH_3)$ complexes in the ligand-solvent interaction systems were investigated using the ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The potential energy surfaces for the ligand exchange reactions used for the conversions of $(PtCl_4\;+\;H_2O)^{^\ast_\ast}\;to\;[PtCl_3(H_2O)\;+\;Cl^-]$ and $[Pt(NH_3)_2Cl_2\;+\;H_2O]$$[Pt(NH_3)_2Cl_2\;+\;H_2O]$ to $[Pt(NH_3)_2Cl(H_2O)\;+\;Cl^-] $ were investigated in detail. For these two exchange reactions, the transition states $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime])^{^\ast_\ast} $ correspond to complexes such as $(PtCl_4{\cdot}{\cdot}{\cdot}H_2O)^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$, respectively. In the transition state, $([PtCl_4{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]]^{^\ast_\ast})$ have a kind of 6-membered $(Pt-Cl{\cdot}{\cdot}{\cdot}HOH{\cdot}{\cdot}{\cdot}Cl)$ and $(Pt-OH{\cdot}{\cdot}{\cdot}Cl{\cdot}{\cdot}{\cdot}HN)$ interactions, respectively, wherein a central Pt(II) metal directly combines with a leaving $Cl^-$ and an entering $H_2O$. Simultaneously, the entering $H_2O$ interacts with a leaving $Cl^-$. No vertical one metal-ligand interactions $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime]) $ are found at the axial positions of the square planar $(PtY_2L_2)$ complexes, which were formed via a vertically associative mechanism leading to $D_{3h}$ or $C_{2v}$-transition state symmetry. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes are also examined quantitatively. Schematic diagrams for the dissociation reactions of {PtCl4(H2O)n(n=2,4)} into {$PtCl_3(H_2O)_{(n-2)}\;+\;Cl^-(H_2O)_2$} and the binding energies {$PtCl_4(H_2O)_n$(n = 1-5)} of $PtCl_4$ with water molecules are drawn.

Roles and Importance of Microbes in the Radioactive Waste Disposal (방사성폐기물 처분에서 미생물의 역할과 중요성)

  • Baik, Min-Hoon;Lee, Seung-Yeop;Roh, Yeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  • PDF