• Title/Summary/Keyword: atomic number

Search Result 734, Processing Time 0.1 seconds

Measurement of CT Numbers for Effective Atomic Number And Physical Density of Compound (화합물의 물리적 밀도와 유효원자번호에 대한 CT수 측정)

  • Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2021
  • In the AAPM CT performance phantom, there is little data on the CT number of the effective atomic number and physical density corresponding to each peg and water of the CT number calibration insert. Therefore, the necessity of documentation was raised.The purpose of this study is to calculate the effective atomic number for each peg and water of the CT number calibration insert in the AAPM CT performance phantom, and to measure the CT number for the calculated effective atomic number and physical density for comparative analysis.In order to obtain CT number data on the effective atomic number and physical density of each peg and water from the CT number calibration insert of the AAPM CT performance phantom, the effective atomic number for each peg and water was first calculated. Then, CT slices were obtained by scanning the CT number calibration with a CT scanner. CT numbers were measured for each peg and water in the central CT slice. As a result, the CT numbers for the effective atomic number showed a nonlinear pattern of repeating the increase and decrease as the effective atomic number increased. In addition, the CT numbers for physical density showed a nonlinear pattern of repeating the increase and decrease as the physical density increased.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

Sensitivity Analysis on Various Parameters for Lattice Analysis of DUPIC Fuel with WIMS-AECL Code

  • Gyuhong Roh;Park, Hangbok;Park, Jee-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.64-69
    • /
    • 1997
  • The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  • PDF

ATOMIC HYPER BCK-ALGEBRAS

  • Harizavi, Habib
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2009
  • In this manuscript, we introduce the concept of an atomic subset of the hyper BCK-algebra and study its properties. Also, we give a characterization of the atomic hyper BCK-algebra and show that there are exactly (up to isomorphism) n atomic hyper BCK-algebras H with |H| = n for any natural number n.

A Study on the Possibility of Pancreas Detection through Extraction of Effective Atomic Number using a Simulation such as Dual-energy CT (이중에너지 CT와 같은 시뮬레이션을 이용한 유효원자번호 추출을 통한 췌장 검출 가능성 연구)

  • Son, Ki-Hong;Lee, Soo-Yeul;Chung, Myung-Ae;Kim, Dae-Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.537-543
    • /
    • 2022
  • The purpose of this simulation study was to evaluate the possibility of pancreas detection through effective atomic number information using dual-energy computed tomography(CT). The effective atomic number of 10 tissue-equivalent materials were estimated through stoichiometric calibration. For stoichiometric calibration, HU values at low-energy (80 kV) and high-energy (140 kV) for 10 tissue-equivalent materials were used. Based on this method, the effective atomic number image of the tissue-equivalent material was extracted through an iterative algorithm. According to the results, the attenuation ratio in accordance with the effective atomic number was estimated to have an R2 value of 0.9999, and the effective atomic number of Pancreas, Water, Liver, Blood, Spongiosa, and Cortical bone was overall within 1% accuracy compared to the theoretical value. Conventional pancreatic cancer examination uses a contrast medium, so there is a possibility of potential side effects of the contrast medium. In order to solve this problem, it is thought that it will be possible to contribute to an accurate and safe examination by extracting the effective atomic number using dual-energy CT without contrast enhancement. Based on this study, future research will be conducted on the detection of pancreatic cancer using the HU value of pancreatic cancer based on clinical images.

PRELIMINARY STUDY ON THE ALPHA TRACK ANALYSIS OF SPHERICAL URANIUM METAL PARTICLES

  • Pyo Hyung-Yeol;Kim Jong-Yun;Lee Myung-Ho;Park Yong-Jun;Jee Kwang-Yong;Kim Won-Ho
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.353-358
    • /
    • 2006
  • Alpha track analysis for the determination of the trace amount of alpha emitting nuclides in a very small particle was performed as an efficient and powerful technique during safeguard inspection. Metal particles with well-defined spherical shape, size and isotopic compositions as a reference material were used to correlate the number of tracks or track diameter with an isotopic composition eventually to identify the uranium enrichment in the environmental swipe samples. Slopes in the number of tracks versus the exposure time curve provide a simple insight into the uranium enrichment of an unknown particle. Low enriched uranium metal particles result in slopes still steeper than the depleted or natural uranium metal particles. In addition, a linear relationship between track diameter and particle size Is thought to be a useful first stage analytical tool as an efficient and convenient inspection guide. The significance of the simple linear model was also judged using the usual statistical tests.

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

A CORRELATION FOR SINGLE PHASE TURBULENT MIXING IN SQUARE ROD ARRAYS UNDER HIGHLY TURBULENT CONDITIONS

  • Jeong, Hae-Yong;Ha, Kwi-Seok;Kwon, Young-Min;Chang, Won-Pyo;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.809-818
    • /
    • 2006
  • The existing experimental data related to the turbulent mixing factor in rod arrays is examined and a new definition of the turbulent mixing factor is introduced to take into account the turbulent mixing of fluids with various Prandtl numbers. The new definition of the mixing factor is based on the eddy diffusivity of energy. With this definition of the mixing factor, it was found that the geometrical parameter, ${\delta}_{ij}/D_h$ correlates the turbulent mixing data better than Sid, which has been used frequently in existing correlations. Based on the experimental data for a highly turbulent condition in square rod arrays, a correlation describing turbulent mixing dependent on the parameter ${\delta}_{ij}/D_h$ has been developed. The correlation is insensitive to the Re number and it takes into account the effect of the turbulent Prandtl number. The proposed correlation predicts a reasonable mixing even at a lower S/d ratio.

Experimental investigation of effective atomic numbers for some binary alloys

  • Sharma, Renu;Sharma, J.K.;Kaur, Taranjot;Singh, Tejbir;Sharma, Jeewan;Singh, Parjit S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1571-1574
    • /
    • 2017
  • In the present work, the gamma ray backscattering technique was used to determine the effective atomic numbers for certain binary alloys. With the help of a muffle furnace, the binary alloys were synthesized using the melt quenching technique with different compositions of $_{82}Pb$, $_{50}Sn$, and $_{30}Zn$. The intensity distribution of backscattered photons from radioactive isotope $^{22}Na$ (511 keV) was recorded with the help of GAMMARAD5 [$76mm{\times}76mm$ NaI(Tl) scintillator detector] and analyzed as a function of both atomic number and thickness of the target material. The effective atomic numbers for the same binary alloys were also computed theoretically using the atomic to electronic cross-section method with the help of the mass attenuation coefficient database of WinXCom (2001). Good agreement was observed between theoretical and experimental results for the effective atomic numbers of all the selected alloys.