• 제목/요약/키워드: atomic layer chemical vapor deposition

검색결과 128건 처리시간 0.022초

The Study on the Uniformity, Deposition Rate of PECVD SiO2 Deposition

  • Eun Hyeong Kim;Yoon Hee Choi;Hyeon Ji Jeon;Woo Hyeok Jang;Garam Kim
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.87-91
    • /
    • 2024
  • SiO2, renowned for its excellent insulating properties, has been used in the semiconductor industry as a valuable dielectric material. High-quality SiO2 films find applications in gate spacers and interlayer insulation gap-fill oxides, among other uses. One of the prevalent methods for depositing these SiO2 films is plasma enhanced chemical vapor deposition (PECVD) favored for its relatively low processing costs and ability to operate at low temperatures. However, compared to the increasingly utilized atomic layer deposition (ALD) method, PECVD exhibits inferior film characteristics such as uniformity. This study aims to produce SiO2 films with uniformity as close as possible to those achieved by ALD through the adjustment of PECVD process parameters. we conducted a total of nine PECVD processes, varying the process time and gas flow rates, which were identified as the most influential factors on the PECVD process. Furthermore, ellipsometry analysis was employed to examine the uniformity variations of each process. The experimental results enabled us to elucidate the relationship between uniformity and deposition rate, as well as the impact of gas flow rate and deposition time on the process outcomes. Additionally, thickness measurements obtained through ellipsometer facilitate the identification of optimal process parameters for PECVD.

  • PDF

Si 기판에서 원자층 화학 기상 증착법으로 제조된 Al2O3 및 ZrO2 유전 박막의 결정학적 특성 및 계면 구조 평가 (Crystallographic and Interfacial Characterization of Al2O3 and ZrO2 Dielectric Films Prepared by Atomic Layer Chemical Vapor Deposition on the Si Substrate)

  • 김중정;양준모;임관용;조홍재;김원;박주철;이순영;김정선;김근홍;박대규
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.497-502
    • /
    • 2003
  • Crystallographic characteristics and interfacial structures of $Al_2$$O_3$and $ZrO_2$dielectric films prepared by atomic layer chemical vapor deposition (ALCVD) were investigated at atomic scale by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS)/electron energy-loss spectroscopy (EELS) coupled with a field-emission transmission electron microscope. The results obtained from cross-sectional and plan-view specimens showed that the $Al_2$$O_3$film was crystallized by annealing at a high temperature and its crystal system might be evaluated as either cubic or tetragonal phase. Whereas the $ZrO_2$film crystallized during deposition at a low temperature of ∼$300^{\circ}C$ was composed of both tetragonal and monoclinic phase. The interfacial thickness in both films was increased with the increased annealing temperature. Further, the interfacial structures of X$ZrO_2$$O_3$and $ZrO_2$films were discussed through analyses of EDS elemental maps and EELS spectra obtained from the annealed films, respectively.

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun;Yoo, Seung-Ho;Chung, Taek-Mo;An, Ki-Seok;Yoo, Hee-Soo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.225-228
    • /
    • 2002
  • Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.

유리탄소의 동시증착에 의한 TRISO 피복입자의 ZrC 코팅층 미세구조와 화학양론비 제어 (Microstructure of ZrC Coatings of TRISO Coated Particles by Codeposition of Free Carbon and Control of Stoichiometry)

  • 고명진;김대종;박지연;조문성;김원주
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.446-450
    • /
    • 2013
  • TRISO coated particles with a ZrC barrier layer were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method for a use in a very high temperature gas-cooled reactor (VHTR). The ZrC layer was deposited by the reaction between $ZrCl_4$ and $CH_4$ gases at $1500^{\circ}C$ in an $Ar+H_2$ mixture gas. The amount of free carbon codeposited with in ZrC was changed by controlling the dilution gas ratio. Near-stoichiometric ZrC phase was also deposited when an impeller was employed to a $ZrCl_4$ vaporizer which effectively inhibited the agglomeration of $ZrCl_4$ powders during the deposition process. A near-stoichiometric ZrC coating layer had smooth surface while ZrC containing the free carbon had rough surface with tumulose structure. Surface roughness of ZrC increased further as the amount of free carbon increased.

Synthesis of Diamond Thin Film by Helicon Plasma Chemical Vapor Deposition

  • Hyun, Jun-Won;Kim, Yong-Kin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 2000
  • Diamond films have been achieved on Si(100) substrates using helicon plasma chemical vapor deposition(HPCVD), Gas mixtures with methane and hydrogen have been used. The growth characteristics were investigated by means of X-ray photoelectroton spectroscopy, Atomic force microscopy and X-ray diffraction. We obtained a plasma density as high as 10$\^$10/~10$\^$11/ cm$\^$-3/ by helicon source. The smooth(100) faces of submicron diamond crystallites were found to exhibit pyramidal shaped architecture, The XPS spectrum for the nucleation layer indicates the presence of diamond at 285.4 eV, close to the reported value of 285.5 eV for diamond , XRD results demonstrates the existence of polycrystalline diamond as the diamond (111) and (220) peaks.

  • PDF

금속 산화물을 기반으로 한 이산화탄소 포집과 저장에 대한 최근 기술 (Recent Development in Metal Oxides for Carbon Dioxide Capture and Storage)

  • 오현영;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제30권2호
    • /
    • pp.97-110
    • /
    • 2020
  • 이산화탄소 포집 및 저장기술(CCS)은 인류발생적 요인에 의한 이산화탄소 배출 증가와 그로 인한 기후변화를 완화시킬 수 있는 기술 중 하나이다. 그 중, 매체 순환식 연소(chemical looping combustion, CLC)와 칼슘루핑(calcium looping) 기술은 현재 아민 스크러빙(amine scrubbing)을 대체할 수 있는 유망한 기술로 주목받고 있다. 두 방법 모두 금속 산화물을 이용한 연속적인 순환 사이클 반응에 의한 것이다. 전체적인 이산화탄소 포집 및 저장 성능의 향상을 위해서는 사이클을 거듭하며 발생하는 소결(sintering)로 인한 안정성 저하 문제를 해결하고 금속 산화물의 구조 또한 최적화해야 한다. 금속 산화물 표면에 얇은 박막을 형성하는 것은 소결로 인한 손상을 막을 수 있는 방법이다. 이러한 박막 제조 기술로 잘 알려진 기술에는 화학기상증착법(chemical vapor deposition)과 원자층증착기술(atomic layer deposition)이 있다. 본 총설에서는 CVD, ALD 기술을 비롯하여 효과적인 반응 안정성 향상을 위한 안정제 첨가 방법, 금속 산화물 구조 개선에 대한 다양한 최근 기술들을 다루었다.

MOCVD 공정을 이용한 $Yb_2O_3$ 박막 제조 (Preparation of $Yb_2O_3$ Film by MOCVD Method)

  • 정우영;전병혁;박해웅;홍계원;김찬중
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.75-80
    • /
    • 2006
  • [ $Yb_2O_3$ ] films were successfully deposited on a cube-textured Ni and(100) $SrTiO_3$(STO) single crystal substrates by metal organic chemical vapor deposition(MOCVD) method using $H_2O$ vapor as an oxidant. $H_2O$ vapor was used in order to avoid the oxidation of Ni substrate. The working pressure and Ar flow rate were 10 Ton and 600 sccm, respectively. $Yb_2O_3$ films on STO were formed at high temperatures above $900^{\circ}C$. While XRD peaks from $Yb_2O_3$ were hardly detected at $900^{\circ}C$, the $Yb_2O_3$(400) texture was developed fur the films grown at deposition temperatures above $950^{\circ}C$. The AEM surface roughness of $Yb_2O_3$ film, grown on STO, was in the range of $6{\sim}10nm$ for the film deposited at $950^{\circ}C$ with a $H_2O$ vapor partial pressure of 5.5 Ton and deposition times of 3 and 5 mins. For cube-textured Ni substrate, both $Yb_2O_3$(222) and $Yb_2O_3$ (400) textures were developed textures at deposition temperatures above $850^{\circ}C$.

  • PDF

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.

MOCVD 법에 의해 제조된 YBCO 초전도 박막의 물성에 대한 완충층 템플릿의 영향 (Effect of the Buffered-template on the Property of YBCO Superconducting Film Deposited by MOCVD Method)

  • 전병혁;최준규;김찬중
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.27-32
    • /
    • 2006
  • [$YBa_2Cu_3O_{7-x}$] thin films were deposited on various buffered-templates by a metal organic chemical vapor deposition(MOCVD). Three different templates of $CeO_2/YSZ/CeO_2/pure-Ni(CYC),\;CeO_2/YSZ/Y_2O_3/Ni-3at.%W(YYC)$ and $CeO_2/IBAD-YSZ$/stainless steel were used. The Ni and Ni-W alloy tapes were biaxially textured by cold rolling and annealing heat treatment. The dense YBCO films were grown on both the IBAD and YYC templates with no microcrack, while the YBCO films on the CYC templates were grown with the formation of microcracks and NiO. The YBCO film on the YYC template showed the higher $I_c$ than that on CYC template. Especially, the IBAD templates with a thin $CeO_2$(type I) and thick $CeO_2$(type II) top layer were used to compare the deposition nature of the YBCO on them. Comparing the current property of the YBCO films on IBAD templates, the YBCO film deposited on thick $CeO_2$ layer was better than the film on thin $CeO_2$ layer.

  • PDF

SiC 증착층 계면의 표면조도에 미치는 흑연 기판의 표면조도 영향 (Effects of the Surface Roughness of a Graphite Substrate on the Interlayer Surface Roughness of Deposited SiC Layer)

  • 박지연;정명훈;김대종;김원주
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.122-126
    • /
    • 2013
  • The surface roughness of the inner and outer surfaces of a tube is an important requirement for nuclear fuel cladding. When an inner SiC clad tube, which is considered as an advanced Pressurized Water Cooled Reactor (PWR) clad with a three-layered structure, is fabricated by Chemical Vapor Deposition (CVD), the surface roughness of the substrate, graphite, is an important process parameter. The surface character of the graphite substrate could directly affect the roughness of the inner surface of SiC deposits, which is in contact with a substrate. To evaluate the effects of the surface roughness changes of a substrate, SiC deposits were fabricated using different types of graphite substrates prepared by the following four polishing paths and heat-treatment for purification: (1) polishing with #220 abrasive paper (PP) without heat treatment (HT), (2) polishing with #220 PP with HT, (3) #2400 PP without HT, (4) polishing with #2400 PP with HT. The average surface roughnesses (Ra) of each deposited SiC layer are 4.273, 6.599, 3.069, and $6.401{\mu}m$, respectively. In the low pressure SiC CVD process with a graphite substrate, the removal of graphite particles on the graphite surface during the purification and the temperature increasing process for CVD seemed to affect the surface roughness of SiC deposits. For the lower surface roughness of the as-deposited interlayer of SiC on the graphite substrate, the fine controlled processing with the completed removal of rough scratches and cleaning at each polishing and heat treating step was important.