• Title/Summary/Keyword: atomic force microscope

Search Result 688, Processing Time 0.03 seconds

Effect of Hydroxyl Ethyl Cellulose Concentration in Colloidal Silica Slurry on Surface Roughness for Poly-Si Chemical Mechanical Polishing

  • Hwang, Hee-Sub;Cui, Hao;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.545-545
    • /
    • 2008
  • Poly-Si is an essential material for floating gate in NAND Flash memory. To fabricate this material within region of floating gate, chemical mechanical polishing (CMP) is commonly used process for manufacturing NAND flash memory. We use colloidal silica abrasive with alkaline agent, polymeric additive and organic surfactant to obtain high Poly-Si to SiO2 film selectivity and reduce surface defect in Poly-Si CMP. We already studied about the effects of alkaline agent and polymeric additive. But the effect of organic surfactant in Poly-Si CMP is not clearly defined. So we will examine the function of organic surfactant in Poly-Si CMP with concentration separation test. We expect that surface roughness will be improved with the addition of organic surfactant as the case of wafering CMP. Poly-Si wafer are deposited by low pressure chemical vapor deposition (LPCVD) and oxide film are prepared by the method of plasma-enhanced tetra ethyl ortho silicate (PETEOS). The polishing test will be performed by a Strasbaugh 6EC polisher with an IC1000/Suba IV stacked pad and the pad will be conditioned by ex situ diamond disk. And the thickness difference of wafer between before and after polishing test will be measured by Ellipsometer and Nanospec. The roughness of Poly-Si film will be analyzed by atomic force microscope.

  • PDF

Surface Properties of Glutathione Layer Formed on Gold Surfaces (금 표면 위에 형성된 글루타싸이온 층의 표면 물성)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.379-384
    • /
    • 2012
  • It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8 and 11, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8 and 11, which may be attributed to the ionized-functional-groups of the Glutathione layer.

Electrostatic Interaction between Zirconia and 11-Mercaptoundecylphosphoric-acid Layer Formed on Gold Surfaces (지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.625-630
    • /
    • 2018
  • The electrostatic interactions were investigated between the zirconia and the 11-Mercaptoundecylphosphoric-acid layer formed on gold surfaces for their complex structures. For the investigation, the atomic force microscope was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the Derjaguin-Landau-Verwey-Overbeek theory to estimate the potential and charge density of the surfaces for each condition. The concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law of mass action. The pH dependence was explained with the ionizable groups on the surface. It was found that the 11-Mercaptoundecylphosphoric-acid layer had higher values for the surface charge densities and potentials than the zirconia surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the layer.

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

PZT/LSMO/Pt Thin-Film by Pulse Laser and Sol-Gel Deposition (PZT/LSMO/Pt에 대한 펄스레이저 및 졸겔법에 의한 증착연구)

  • Choi, Kang-Ryong;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-24
    • /
    • 2005
  • This work is to present each properties and the interfacial characterization between PZT layer and LSMO layer of PZT/LSMO/Pt. LSMO thin film grown by KrF(248 nm) excimer lasers are used in pulsed in pulsed laser deposition(PLD). PZT coposites thin films were deposited by spin coating using a commercial resist spinner. LSMO thin film by deposition oxygen pressure 125 mtorr have rhombohedral structure on Pt(111) substrate. The PZT/LSM/Pt pre-orientate to [111] direction. The final thin films were shown that magnetic and electric property was typical value, respective. We report that the lattice between the PZT/LSMO thin film and the substrate plays a very important role and may control to another effects.

Surface Immobilization of Amphiphilic Comb-like Polymer on Polydimethylsiloxane and in vitro Cytotoxicity Assay (양친성 빗 모양 고분자의 PDMS 표면 고정화 및 세포독성 평가)

  • Choi, Jaeyoo;Jung, Jaeyeon;Cheng, Jie;Lee, Jonghwan;Hyun, Jinho;Kim, Hyunjoong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.70-75
    • /
    • 2010
  • It described the modification of polydimethylsiloxane (PDMS) with amphiphilic methyl methacrylate-based polyethylene glycol (PMMA-b-PEG) to enhance the hydrophilicity of a PDMS surface and cytotoxicity of it. PMMA-b-PEG solutions in water/ethanol mixture was spun-cast on the PDMS surface and the surface was characterized by long-term measurement of water contact angle. The morphology of PDMS surfaces coated with PMMA-b-PEG was characterized by field emission scanning electron microscopy and atomic force microscope. Cytotoxicity of the modified surfaces was investigated by MTT assay which would be necessary for the evaluation of tissue compatibility after implantation of the materials. Based on the MTT assay, PDMS coated with PMMA-b-PEG didn't show any significant cytotoxcity.

Dielectric and Magnetic Properties of Co-doped Ni0.65Zn0.35Fe2O4 Thin Films Prepared by Using a Sol-gel Method

  • Lee, Hyun-Sook;Lee, Jae-Gwang;Baek, K.S.;Oak, H.N.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.138-141
    • /
    • 2003
  • $Ni_{0.65}Zn_{0.35}Fe_2O_4$thin films were prepared by using a sol-gel method. Their crystallographic, dielectric and magnetic properties were investigated as a function of Cu contents by means of an X-ray diffractometer (XRD), X-ray reflectivity, LCZ meter (NF2232), a vibrating sample magnetometer (VSM), and an atomic force microscope (AFM). From typical C-V measurements for $Ni_{0.65}Zn_{0.35}Fe_2O_4$ thin films on p-type silicon substrate, the surface charge density was calculated as 1.4 ${\mu}$C/$m^2$. The dielectric constant evaluated from the capacitance at the accumulation state was 28. The high $H_{c}$ and low $M_{sat}$ at x=0.0 and 0.1 were due to the growth of the ${\alpha}$-$Fe_2O_3$ phase having antiferromagnetic properties. The rapidly decreased $H_{c}$ and increased $M_{sat}$ at x=0.2 and 0.3 can be explained that the ${\alpha}$-$Fe_2O_3$ phases have completely disappeared at x=0.3 and so, non-magnetic defects are minimized. The $M_{sat}$ was slightly decreased and the $H_{c}$ was increased above at x=0.3 because the increase of grain boundary due to smaller grain size acts as defects during magnetization process.

An AFM-based Edge Profile Measuring Instrument for Diamond Cutting Tools

  • Asai, Takemi;Motoki, Takenori;Gao, Wei;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.54-58
    • /
    • 2007
  • This paper describes an atomic force microscope (AFM)-based instrument for measuring the nanoscale cutting edge profiles of diamond cutting tools. The instrument consists of a combined AFM unit and an optical sensor to align the AFM tip with the top of the diamond cutting tool edge over a submicron range. In the optical sensor, a aser beam is emitted from a laser diode along the Y-axis and focused to a small beam spot with a diameter of approximately $10{\mu}m$ at the beam waist, which is then received by a photodiode. The top of the tool edge is first brought into the center of the beam waist by adjusting it in the X-Z-plane while monitoring the variation in the photodiode output. The cutting tool is then withdrawn and its top edge position at the beam center is recorded. The AFM tip can also be positioned at the beam center in a similar manner to align it with the top of the cutting edge. To reduce electronic noise interference on the photodiode output and thereby enhance the alignment accuracy, a technique is applied that can modulate the photodiode output to an AC signal by driving the laser diode with a sinusoidal current. Alignment experiments and edge profile measurements of a diamond cutting tool were carried out to verify the performance of the proposed system.

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

Investigation of LC Alignment Using Ion-beam and Overcoat Layer (이온빔 에너지와 유기절연막 사용에 의한 액정 배향 연구)

  • Kim, Byoung-Yong;Park, Hong-Gyu;Lee, Kang-Min;Oh, Byeong-Yun;Kang, Dong-Hun;Han, Jin-Woo;Kim, Young-Hwan;Han, Jeong-Min;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.370-370
    • /
    • 2007
  • The liquid crystal (LC) aligning capabilities treated on the Organic overcoat thin film surfaces by ion beam irradiation and rubbing method was successfully studied for the first time. The Organic overcoat layer was coated by spin-coating. In order to characterize the LC alignment, the microscope, pretilt angle, thermal stress, and atomic force microscopy (AFM) image was used. The good LC aligning capabilities treated on the Organic overcoat thin film surfaces with ion beam exposure of $45^{\circ}$ above ion beam energy density of 1200 eV can be achieved. But, the alignment of defect of NLC on the Organicovercoat surface at low energy density of 600 eV was measured. The pretilt angle of NLC on the Organic overcoat thin film surface with ion beam exposure of $45^{\circ}$ for 1 min at energy density of 1800eV was measured about 1.13 degree. But, low pretilt angles of NLC on the Organic overcoat thin film surface with ion beam exposure at energy density of 600, 1200, 2400, and 3000 eV was measured. Also, the pretilt angle of NLC on the rubbed Organic overcoat thin film surfaces was measured about 0.04 degrees. Finally, the good thermal stability of LC alignment on the Organic overcoat thin film surface with ion beam exposure of $45^{\circ}$ for 1 min can be measured.

  • PDF