• Title/Summary/Keyword: atomic clocks

Search Result 14, Processing Time 0.018 seconds

Analysis of Short-Term and Long-Term Characteristics of GPS Satellite Clock Offsets (GPS 위성시계오차의 장단기 특성 분석)

  • Son, Eun-Seong;Park, Kwan-Dong;Kim, Kyeong-Hui
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.563-571
    • /
    • 2010
  • The GPS satellite has three or four atomic clocks that consist of cesiums and rubidiums and the NANU messages can be used to identify the kind of the onboard atomic clock because they classify the clock type on a daily basis. In this study, for long-term analysis of the GPS satellite clock behavior, we extracted satellite clock errors for every PRN from years 2001 through 2009 using the SP3 files that are provided by the IGS. As a result, the cesium clock offsets usually have a linear trend of drifting. On the other hand, rubidium offsets show curvilinear variations in general, even though they cannot be represented as anyone specific polynomial function. For short-term analysis, we extracted satellite clock errors for each PRN for a week-long period using the CLK files that are also provided by the IGS and curve-fitted them with first-order and second-order polynomial functions. In cases of cesium clock errors, they were well-represented by first-order polynomial functions and rubidium clock errors were similar with second-order polynomials. However, some of rubidium clock errors could not be represented as any polynomial fitting function. To analyze the characteristic of GPS satellite by each block and atomic clock, we applied Modified Allan Deviation criterion to the dataset from years 2007 and 2010. We found that the Modified Allan Deviation characteristics changed significantly according the block and atomic clock type.

Selective Extraction of a Single Optical Frequency Component from an Optical Frequency Comb (광 주파수 빗으로부터 단일 광 주파수 성분의 선택적 추출)

  • Han Seb Moon
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.225-234
    • /
    • 2023
  • Mode-locked pulse lasers have a temporal periodicity up over a short period of time. However, in the time-frequency domain, a pulsed laser with temporal periodicity is described as an optical frequency comb with constant frequency spacing. Each frequency component of the optical frequency comb in the frequency domain is then a continuous-wave (CW) laser with hundreds of thousands of single-frequency-component CW lasers in the time domain. This optical frequency comb was developed approximately 20 years ago, enabling the development of the world's most precise atomic clocks and precise transmission of highly stable optical frequency references. In this review, research on the selective extraction of the single-frequency components of optical frequency combs and the control of the frequency components of optical combs is introduced. By presenting the concepts and principles of these optical frequency combs in a tutorial format, we hope to help readers understand the properties of light in the time-frequency domain and develop various applications using optical frequency combs.

Improvement of Loran-C Timing Accuracy by Inland Differential ASF Measurements (내륙 differential ASF 측정을 통한 Loran-C 시각 정확도 향상)

  • Lee, Chang-Bok;Hwang, Sang-Wook;Lee, Jong-Koo;Lee, Young-Kyu;Lee, Sang-Jeong;Yang, Sung-hoon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • In this study we measured a differential ASF to improve the accuracy of time synchronization with the signal transmitted from Pohang 9930M Loran station. We obtained the differential ASF which is calculated from a difference of the TOA measurements between KRISS and Chungnam National University(CNU), and KRISS and National Maritime PNT Office respectively. The TOA measurement at KRISS was measured by UTC(KRIS) reference clock and other sites were measured by atomic clocks respectively. The time variations of differential ASF measurements at CNU and National Maritime PNT Office were within $0.1{\mu}s$ and $0.05{\mu}s$ respectively. And we found the time variations of $0.1{\mu}s$ depending on the surrounding radio-wave environments from the differential ASF measurements of 60 minute moving averages. We can improve the accuracy of time synchronization of the local clock to within 10 ns by compensating the differential ASF through removing the common component of ASF. And we measured the absolute ASF between the Pohang transmit station and KRISS by the measurement technique of absolute time delay using a cesium atomic clock. The average ASF between two points is about $3.5{\mu}s$.

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.