• 제목/요약/키워드: atomic $L_p$-spaces

검색결과 2건 처리시간 0.014초

On the asymptotic-norming property in lebesgue-bochner function spaces

  • Cho, Sung-Jin;Lee, Byung-Soo
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.227-232
    • /
    • 1992
  • In this paper we prove that if (.ohm., .SIGMA., .mu.) is a non-purely atomic measure space and X is strictly convex, then X has the asymptotic-norming property II if and only if $L_{p}$ (X, .mu.), 1 < p < .inf., has the asymptotic-norming property II. And we prove that if $X^{*}$ is an Asplund space and strictly convex, then for any p, 1 < p < .inf., $X^{*}$ has the .omega.$^{*}$-ANP-II if and only if $L_{p}$ ( $X^{*}$, .mu.) has the .omega.$^{*}$-ANP-II.*/-ANP-II.

  • PDF