• Title/Summary/Keyword: atmospheric temperature

검색결과 2,122건 처리시간 0.031초

Retrieval of land Surface Temperature from MTSAT-1R

  • Kwak, Seo-Youn;Suh, Myoung-Seok;Kang, Jeon-Ho;Kwak, Chong-Heum;Kim, Chan-Soo
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.385-388
    • /
    • 2006
  • The land surface temperature (LST) can be defined as a weighted average temperature of components which constitute a pixel. The coefficients of split-window algorithm for MTSAT-1R were obtained by means of a statistical regression analysis from radiative transfer simulations using MODTRAN 4.0 for a wide range of atmospheric, satellite viewing angle (SVA) and lapse rate conditions. 6 types of atmospheric profile data imbedded in the MODTRAN 4 are used for the radiative transfer simulations. The RMSE is clearly larger on warm and humid profiles than cold and dry profiles, especially when the satellite viewing angle and lapse rate are large. The derivation of LST equations according to the atmospheric profiles clearly decreased the RMSE without regard to the SVA and lapse rate. The bias and RMSE are decreased as the more controls factors included. This preliminary result indicates that the characteristics of atmosphere, SVA and lapse rate should be included in the LST equation.

Hi-CON/H2 BAF와 HNx BAF의 소둔사이클 제어온도에 관한 연구 (A Study on Annealing Cycle Control Temperature of Hi - CON/2 BAF and HNx BAF)

  • 김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.114-122
    • /
    • 1994
  • A cold temperature control system for the BAF(batch annealing furnace) has been established in order to reduce energy consumption to imrpove productivity and stabilize the properties of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, changing annealing cycle time according to BAF temperature with time during heating and actual temperature measurements cold spot during soaking. The results of the temperature variation effect on the batch annealing are as follows. 1) Cooling rate is increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component. Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas and annealing cycle time is reduce to 2.7 times. 2) With enlarging the difference between furnace temperature and soaking temperature at the HNx BAF, heating time becomes short, but cooling time is indifferent. 3) If temperature difference of 300.deg. C in the temperature change of cold spot according to the annealing cycle control temperature, Hi-CON/H2BAF is interchanging at each other at 26hours, but HNxBAF at 50 hours. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1219 mm width coil must be 2.5 hours longer then that of 914mm width coil for the same coil weight at Hi-CON/H2BAF. But, it is necessary to make 2 hours longer at HNxBAF.

  • PDF

The Annual Averaged Atmospheric Dispersion Factor and Deposition Factor According to Methods of Atmospheric Stability Classification

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.260-267
    • /
    • 2016
  • Background: This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Materials and Methods: Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. Results and Discussion: All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. Conclusion: These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

도시 대기 중 유기염소계 살충제의 농도수준 및 배출 특성 (Atmospheric Concentrations and Temperature- Dependent Air-Surface Exchange of Organochlorine Pesticides in Seoul)

  • 최민규;여현구;천만영;선우영
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.275-284
    • /
    • 2002
  • Atmospheric concentrations of organochlorine pesticides (OCPs) in Seoul, South Korea between July 1999 and May 2000 were determined to investigate concentration distribution in air, relationship between concentrations and meteorological conditions, and apportionment of sources e.g. local sources (air- surface exchange) and long range transport. Endosulfan and $\alpha$-HCH were the highest concentrations in atmosphere with values typcally ranging from 10s to l00s of pg/㎥. These high concentrations may be attributed to their usage, period and chemical property (Koa). All OCPs also showed elevated levels during the summer and were positively correlated with temperature. This would suggest that a seasonal enhancement was due to (re)volatilization from secondary sources and application during the warmer months. The temperature dependence of atmospheric concentrations of OCPs were investigated using plots of the natural logarithm of partial pressure (In P) vs reciprocal mean temperatures (1/T), and environmental phase-transition energies were calculated for each of the pesticides. For OCPs, temperature dependence was statistically significant (at the 99.99% confidence level) and temperature accounted for 35~95% of the variability in concentrations. The relatively higher slopes and phase-transition energies for $\alpha$-, ${\gamma}$-chlordane, endosulfan and endosulfan sulfate suggested that volatilization from local sources influenced their concentrations. The relatively lower those for $\alpha$-, ${\gamma}$-HCH, p, p'-DDE and heptachlor epoxide also suggested that volatilization from local sources and long range transport influenced their concentrations.

Local Surface Ground Temperature based on Energy Balance Model with the use of GRID/GIS, Remote Sensed and Meteorological Station Data

  • Ha, Kyung-Ja;Shin, Sun-Hee;Oh, Hyun-Mi;Kim, Jae-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.63-65
    • /
    • 2003
  • The purpose of the study is to produce the surface ground temperature diagnostically using surface EBM with the use of GRID model in Geographic Information Systems (GIS). Certain characteristics have been analyzed for local slope effect, coastal effect and influence of high orographic aspect on the surface ground temperature. We present discussions on the meteorological responsibility for their temperature. The derived surface ground temperatures can be provided for comparison with those from satellite-based observ ation.

  • PDF

Fin and Temperature Effect of Frost in Ambient Air Vaporizer

  • Lee, Seong-Woo;Choi, Sung-Woong
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.211-216
    • /
    • 2022
  • Since liquefied natural gas (LNG) is imported in a liquid state of about -162℃ to increase transportation efficiency in Korea, it must be vaporized in a gaseous state to supply it to consumers. Among them, ambient air vaporizer (AAV) has caught attention due to eco-friendly and low costs characteristics. However, there is a disadvantage that the performance of the heat exchanger is deteriorated due to frost due to mist and icing when used for a long time. In this paper, frost generation model in AAV vaporizer was investigated with numerically to examine utilizing the vaporizer performance with the frost generation behavior. The frost generation behavior of AAV vaporizers was examined with humidity, fin characteristic, and temperature effects. As for the LNG discharge temperature, the 12 fin vaporizer showed the highest discharge temperature when the atmospheric temperature was 25℃, and the 8 fin vaporizer had the lowest LNG discharge temperature when the atmospheric temperature was 0℃. In the case of frost formation, in the case of the 12 fin vaporizer, it was formed the most at the atmospheric temperature of 25℃, and the least was formed in the vaporizer at the 0℃ condition of the atmospheric temperature of 8 fins.

연소실 분위기 압력이 화염형상에 미치는 영향 (The Influence of Combustor Atmospheric Pressure on Flame Characteristics)

  • 김종률;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1134-1139
    • /
    • 2004
  • Recently, development of flame control scheme has been hot issues in the combustion engineering. It has been held that flame shape can be controllable by pressure inside combustor. The influence of combustor atmospheric pressure on flame shape was investigated in the present study. The flame shape, flammable limit, flame temperature and nitric oxide emission were measured as functions of combustor atmospheric pressure and equivalence ratio. The reaction region became longer and wider with decreasing combustor atmospheric pressure by direct photography, hence reduction of blow off limit. This tendency was also observed in the mean flame temperature distribution. Nitric oxide emission decreased with decreasing combustor atmospheric pressure. Low NOx combustion is ascribed to wide-spread reaction region in the low atmospheric pressure condition. These results demonstrate that flame shape and nitric oxide emission can be controllable with combustor atmospheric pressure.

  • PDF

우리나라에서 계절별 일교차의 분포 특성과 그 원인 (Characteristics of Seasonal Mean Diurnal Temperature Range and Their Causes over South Korea)

  • 서명석;홍성근;강전호
    • 대기
    • /
    • 제19권2호
    • /
    • pp.155-168
    • /
    • 2009
  • Characteristics of seasonal mean diurnal temperature range (DTR) and their causes over South Korea are investigated using the 60 stations data of Korea Meteorological Administration from 1976 to 2005. In general, the seasonal mean DTR is greatest during spring (in inland area) and least during summer (urban and coastal area). The spatial and seasonal variations of DTR are closely linked with the land surface conditions (especially vegetation activity and soil moisture) and atmospheric conditions (cloud amount, precipitation, local circulation). The seasonal mean DTR shows a decreasing trend at the major urban areas and at the north-eastern part of South Korea. Whereas, it shows an increasing trend at the central area of the southern part. Decreasing and increasing trends of DTR are more significant during summer and fall, and during spring and winter. The decrease (increase) of DTR is mainly caused by the stronger increase of daily minimum (maximum) temperature than daily maximum (minimum) temperature. The negative effects of precipitation and cloud amount on the DTR are greater during spring and at the inland area than during winter and at the coastal area. And the effect of daytime precipitation on the DTR is greater than that of nighttime precipitation.

대기압 저온 플라즈마 처리에 의한 폴리이미드의 친수화 효과 (Hydrophilic Effect of the Polyimide by Atmospheric Low-temperature Plasma Treatment)

  • 조중희;강방권;김경수;최병규;김세훈;최원열
    • 한국전기전자재료학회논문지
    • /
    • 제18권2호
    • /
    • pp.148-152
    • /
    • 2005
  • Atmospheric low-temperature plasma was produced using dielectric barrier discharge (DBD) plate-type plasma reactor and high frequency of 13.56 Hz. The surfaces of polyimide films for insulating and packaging materials were treated by the atmospheric low-temperature plasma. The contact angle of 67$^{\circ}$ was observed before the plasma treatment. The contact angle was decreased with deceasing the velocity of plasma treatment. In case of oxygen content of 0.2 %, electrode gap of 2 mm, the velocity of plasma treatment of 20 mm/sec, and input power of 400 W, the minimum contact angle of 13$^{\circ}$ was observed. The chemical characteristics of polyimide film after the plama treatment were investigated using X-ray photoelectron spectroscopy (XPS), and new carboxyl group bond was observed. The surfaces of polyimide films were changed into hydrophilic by the atmospheric low-temperature plasma. The polyimide films having hydrophilic surface will be very useful as a packaging and insulating materials in electronic devices.

다양한 대기풍속 및 대기온도 구배 조건에서의 공장 배출 가스의 확산 특성에 관한 연구 (A Study for Characteristics of Stack Plume Dispersion under Various)

  • 박일석
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.773-780
    • /
    • 2010
  • The dispersion of plume which is emitted from a chimney is governed by a lot of factors: wind, local terrain, turbulence intensity of atmosphere, and temperature, etc. In this study, we numerically investigate the plume dispersions for various altitudinal temperature gradients and wind speeds. The normal atmosphere has the temperature decrease of $0.6^{\circ}C/100m$, however, actually the real atmosphere has the various altitudinal temperature profiles according to the meteorological factors. A previous study focused on this atmospheric temperature gradient which induces a large scale vertical flow motion in the atmosphere thus makes a peculiar plume dispersion characteristics. In this paper, the effects of the atmospheric temperature gradient as well as the wind speed are investigated concurrently. The results for the developing processes in the atmosphere and the affluent's concentrations at the ambient and ground level are compared under the various altitudinal temperature gradients and wind speeds.