• 제목/요약/키워드: atmospheric pressure photoionization (APPI)

검색결과 3건 처리시간 0.015초

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol

  • Ahmed, Arif;Islam, Syful;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.146-151
    • /
    • 2021
  • In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.

Gas Chromatography-High Resolution Tandem Mass Spectrometry Using a GC-APPI-LIT Orbitrap for Complex Volatile Compounds Analysis

  • Lee, Young-Jin;Smith, Erica A.;Jun, Ji-Hyun
    • Mass Spectrometry Letters
    • /
    • 제3권2호
    • /
    • pp.29-38
    • /
    • 2012
  • A new approach of volatile compounds analysis is proposed using a linear ion trap Orbitrap mass spectrometer coupled with gas chromatography through an atmospheric pressure photoionization interface. In the proposed GC-HRMS/MS approach, direct chemical composition analysis is made for the precursor ions in high resolution MS spectra and the structural identifications were made through the database search of high quality MS/MS spectra. Successful analysis of a complex perfume sample was demonstrated and compared with GC-EI-Q and GC-EI-TOF. The current approach is complementary to conventional GC-EI-MS analysis and can identify low abundance co-eluting compounds. Toluene co-sprayed as a dopant through API probe significantly enhanced ionization of certain compounds and reduced oxidation during the ionization.

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • 제2권2호
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.