• 제목/요약/키워드: atmospheric aerosols

Search Result 383, Processing Time 0.026 seconds

Measurements of Isoprene and Monoterpenes at Mt. Taehwa and Estimation of Their Emissions (경기도 태화산에서 isoprene과 monoterpenes 측정 및 배출량 산정)

  • Kim, Hakyoung;Lee, Meehye;Kim, Saewung;Guenther, Alex.B.;Park, Jungmin;Cho, Gangnam;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.217-226
    • /
    • 2015
  • To investigate the distributions of BVOCs (Biogenic Volatile Organic Compounds) from mountain near mega city and their role in forest atmospheric, BVOCs and their oxidized species were measured at a 41 m tower in Mt. Taehwa during May, June and August 2013. A proton transfer reaction-mass spectrometer (PTR-MS) was used to quantify isoprene and monoterpenes. In conjunction with BVOCs, $O_3$, meteorological parameters, PAR (Photosynthetically Active Radiation) and LAI (Leaf Area Index) were measured. The average concentrations of isoprene and monoterpenes were 0.71 ppbv and 0.17 ppbv, respectively. BVOCs showed higher concentrations in the early summer (June) compared to the late summer (August). Isoprene started increasing at 2 PM and reached the maximum concentration around 5 PM. In contrast, monoterpenes concentrations began to increase 4 PM and stayed high at night. The $O_3$ maximum was generally found at 3 PM and remained high until 5 PM or later, which was concurrent with the enhancement of $O_3$. The concentrations of BVOCs were higher below canopy (18 m) than above canopy, which indicated these species were produced by trees. At night, monoterpenes concentrations were negatively correlated with these of $O_3$ below canopy. Using MEGAN (Model of Emissions of Gases and Aerosols from Nature), the emissions of isoprene and monoterpenes were estimated at 1.1 ton/year and 0.9 ton/year, respectively at Mt. Taehwa.

Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data (MODIS와 TOMS자료를 이용한 2001년 동북아시아 지역의 대기 에어로졸 모니터링)

  • 이권호;홍천상;김영준
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.77-89
    • /
    • 2004
  • The spatial and temporal variations of aerosol optical depth (AOD) over Northeast Asia regions have special importance in the aerosol research for estimation of aerosol radiative forcing parameters and climate change. Aerosol optical and physical properties (AOD and ${\AA}$ngstrom parameter) have been investigated by using Moderate Resolution Imaging Spectroradiometer (MODIS) and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) to estimate aerosol characteristics over the study region during 2001. Additionally, aerosol characteristics over the Korean peninsular during Aerosol Characteristic Experiment in Asia (ACE-Asia) Intensive Observation Period (IOP) have been investigated by using satellite observations. The results showed that the daily-observed aerosol data indicate seasonal variations with relatively higher aerosol loading in the spring and very low during the winter. The typical Asian dust case showed higher AOD (>0.7) with lower Angstrom exponent (<0.5) and higher AI (>0.5) that is mainly due to the composition of coarse particles in the springtime. Mean AOD for 2001 at 4 different places showed 0.65$\pm$0.37 at Beijing, 0.31$\pm$0.19 at Gosan, 0.54$\pm$0.26 at Seoul, and 0.38$\pm$0.19 at Kwangju, respectively. An interesting result was found in the present study that polluted aerosol events with small size dominated-aerosol loading around the Korean peninsular are sometimes observed. The origin of these polluted aerosols was thought to East China. Aerosol distribution from satellite images and trajectory results shows the proof of aerosol transport. Therefore, aerosol monitoring using satellite data is very useful.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.