• 제목/요약/키워드: ataxia telangiectasia

검색결과 28건 처리시간 0.237초

Novel compound heterozygous mutations of ATM in ataxia-telangiectasia: A case report and calculated prevalence in the Republic of Korea

  • Jang, Min Jeong;Lee, Cha Gon;Kim, Hyun Jung
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.110-114
    • /
    • 2018
  • Ataxia-telangiectasia (AT; OMIM 208900) is a rare autosomal recessive inherited progressive neurodegenerative disorder, with onset in early childhood. AT is caused by homozygous or compound heterozygous mutations in ATM (OMIM 607585) on chromosome 11q22. The average prevalence of the disease is estimated at 1 of 100,000 children worldwide. The prevalence of AT in the Republic of Korea is suggested to be extremely low, with only a few cases genetically confirmed thus far. Herein, we report a 5-year-old Korean boy with clinical features such as progressive gait and truncal ataxia, both ankle spasticity, dysarthria, and mild intellectual disability. The patient was identified as a compound heterozygote with two novel genetic variants: a paternally derived c.5288_5289insGA p.(Tyr1763*) nonsense variant and a maternally derived c.8363A>C p.(His2788Pro) missense variant, as revealed by next-generation sequencing and confirmed by Sanger sequencing. Based on claims data from the Health Insurance Review and Assessment Service Republic of Korea, we calculated the prevalence of AT in the Republic of Korea to be about 0.9 per million individuals, which is similar to the worldwide average. Therefore, we suggest that multi-gene panel sequencing including ATM should be considered early diagnosis.

INHIBITORY EFFECT OF ALPHA-LIPOIC ACID ON MITOCHONDRIAL DYSFUNCTION AND INTERLEUKIN-8 EXPRESSION IN INTERLEUKIN-1BETA-STIMULATED ATAXIA TELANGIECTASIA FIBROBLASTS

  • J. YOON;H. LEE;J.W. LIM;H. KIM
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제71권1호
    • /
    • pp.155-165
    • /
    • 2020
  • Ataxia telangiectasia (A-T) is an inherited neurodegenerative disease caused by mutation in the ataxia telangiectasia mutated (ATM) gene, leading to loss of function in the encoded protein ATM. Because ATM functions to reduce oxidative stress by up-regulating antioxidant enzymes, oxidative stress is a prevalent A-T phenotype and a mediator of the inflammation that drives A-T pathology. Reactive oxygen species (ROS) levels and the expression of pro-inflammatory cytokine interleukin-8 (IL-8) were higher in A-T cells than in normal cells. ROS are related to mitochondrial dysfunction and activation of nuclear factor kappa B (NF-κB) to induce IL-8 expression. Alpha-lipoic acid (α-LA), a naturally occurring thiol compound, shows an antioxidant effect in various cells. This study is aimed to determine if α-LA confers protection against NF-κB activation, IL-8 expression, and mitochondrial dysfunction in A-T cells which are exposed to the inflammatory cytokine IL-1β. A-T fibroblasts were treated with or without α-LA. The levels of intracellular and mitochondrial ROS, mRNA and protein levels of IL-8, mitochondrial membrane potential (MMP), ATP levels, and DNA binding activity of NF-κB were determined. As a result, IL-1β increased NF-κB activation, IL-8 expression, intracellular and mitochondrial ROS levels, but decreased MMP and ATP level in A-T cells. Pretreatment of A-T cells with α-LA inhibited IL-1β-induced activation of NF-κB, IL-8 expression, and mitochondrial dysfunction by reducing ROS levels. In conclusion, supplementation with α-LA may be beneficial for reducing the oxidative stress-induced mitochondrial dysfunction and IL-8 production associated with A-T.

Recently Emerging Signaling Landscape of Ataxia-Telangiectasia Mutated (ATM) Kinase

  • Farooqi, Ammad Ahmad;Attar, Rukset;Arslan, Belkis Atasever;Romero, Mirna Azalea;ul Haq, Muhammad Fahim;Qadir, Muhammad Imran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6485-6488
    • /
    • 2014
  • Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an interlaced signaling network. There is rapidly growing scientific evidence emphasizing newly emerging paradigms in ATM biology. In this review, we provide latest information regarding how oxidative stress induced activation of ATM can be utilized as a therapeutic target in different cancer cell lines and in xenografted mice. Moreover, crosstalk between autophagy and ATM is also discussed with focus on how autophagy inhibition induces apoptosis in cancer cells.

U937 세포에서 발암관련 유전자들로 구성된 DNA chip을 이용한 방사선 감수성 유전자들의 선발 (Identification of Radiation-Sensitive Gene in U937 Cell by using cDNA-Chip Composed of Human Cancer Related Gene)

  • 김종수;김인규;강경선;윤병수
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권1호
    • /
    • pp.54-59
    • /
    • 2002
  • We have used cDNA microarray hybridization to identify gene regulated in response to gamma-irradiation in U-937 cell. The cDNA-chip was composed entirely of 1,000 human cancer related gene including apoptosis and angiogenesis etc. In gamma-irradiated U-937 cell, highly charged protein, ribosomal protein L32, four and a half LIM domains 3, lipocalin 2 (oncogene 24p3) and interleukin 15, ataxia telangiectasia mutated (includes complementation groups A, C and D) genes showed increased level of its transcription, and cell division cycle 25A, dihydrofolate reductase, topoisomerase (DNA) II beta(180kD), kinase suppressor of ras and strarigin genes showed reduced level of its transcription compared to untreated U-937 cell. The significant change of level of transcription was not found in well-known ionizing radiation(IR)-responsive gene, such as transcription factor TP53 and p53 related gene, except ataxia telangiectasia mutated gene.

  • PDF

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang;Dong Wha Jun;Bo Ram Song;Hanna Shim;Chang-Hun Lee;Sunshin Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.559-565
    • /
    • 2023
  • Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Overexpression of Rb and E2F-1 in Ataxia-Telangiectasia Lymphocytes

  • Varghese, Susan;Jung, Mi-Ra
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.640-644
    • /
    • 1998
  • AT cells exhibit defective cell cycle regulation following DNA damage. Previous studies have shown that induction of p53 and p2i proteins are delayed in response to ionizing rad iation, resulting in the failure of G1/S checkpoint in AT cells. In this study, further investigation of the molecular mechanisms underlying G1/S phase progression in AT cells was conducted. Exponentially growing normal and AT cells were exposed to 2 Gly of ionizing radiation and the expression levels and functional activities of Rb and E2F-1 proteins were determined. We observed overexpression of hyperphosphorylated Rb and E2F-1 proteins in AT cells, which was unaffected post-irradiation. Furthermore, gel shift assays showed that E2F-1-DNA binding was constitutive in AT cells, whereas it was inhibited in control cells following exposure to ionizing radiation. The data suggests that abnormalities in the function of Rb and E2F-1 proteins may also be responsible for the failure of AT cells to arrest in the G1/S checkpoint in response to DNA damage.

  • PDF

Knock-down of human MutY homolog (hMYH) decreases phosphorylation of checkpoint kinase 1 (Chk1) induced by hydroxyurea and UV treatment

  • Hahm, Soo-Hyun;Park, Jong-Hwa;Ko, Sung-Il;Lee, You-Ri;Chung, In-Sik;Chung, Ji-Hyung;Kang, Lin-Woo;Han, Ye-Sun
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.352-357
    • /
    • 2011
  • The effect of human MutY homolog (hMYH) on the activation of checkpoint proteins in response to hydroxyurea (HU) and ultraviolet (UV) treatment was investigated in hMYH-disrupted HEK293 cells. hMYH-disrupted cells decreased the phosphorylation of Chk1 upon HU or UV treatment and increased the phosphorylation of Cdk2 and the amount of Cdc25A, but not Cdc25C. In siMYH-transfected cells, the increased rate of phosphorylated Chk1 upon HU or UV treatment was lower than that in siGFP-transfected cells, meaning that hMYH was involved in the activation mechanism of Chk1 upon DNA damage. The phosphorylation of ataxia telangiectasia and Rad3-related protein (ATR) upon HU or UV treatment was decreased in hMYH-disrupted HEK293 and HaCaT cells. Co-immunoprecipitation experiments showed that hMYH was immunoprecipitated by anti-ATR. These results suggest that hMYH may interact with ATR and function as a mediator of Chk1 phosphorylation in response to DNA damage.

Ginsenoside compound K reduces the progression of Huntington's disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway

  • Hua, Kuo-Feng;Chao, A-Ching;Lin, Ting-Yu;Chen, Wan-Tze;Lee, Yu-Chieh;Hsu, Wan-Han;Lee, Sheau-Long;Wang, Hsin-Min;Yang, Ding-I.;Ju, Tz-Chuen
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.572-584
    • /
    • 2022
  • Background: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of trinucleotide CAG repeat in the Huntingtin (Htt) gene. The major pathogenic pathways underlying HD involve the impairment of cellular energy homeostasis and DNA damage in the brain. The protein kinase ataxia-telangiectasia mutated (ATM) is an important regulator of the DNA damage response. ATM is involved in the phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK plays a critical role in response to DNA damage. Herein, we demonstrated that expression of polyQ-expanded mutant Htt (mHtt) enhanced the phosphorylation of ATM. Ginsenoside is the main and most effective component of Panax ginseng. However, the protective effect of a ginsenoside (compound K, CK) in HD remains unclear and warrants further investigation. Methods: This study used the R6/2 transgenic mouse model of HD and performed behavioral tests, survival rate, histological analyses, and immunoblot assays. Results: The systematic administration of CK into R6/2 mice suppressed the activation of ATM/AMPK and reduced neuronal toxicity and mHTT aggregation. Most importantly, CK increased neuronal density and lifespan and improved motor dysfunction in R6/2 mice. Conversely, CK enhanced the expression of Bcl2 protected striatal cells from the toxicity induced by the overactivation of mHtt and AMPK. Conclusions: Thus, the oral administration of CK reduced the disease progression and markedly enhanced lifespan in the transgenic mouse model (R6/2) of HD.

인체임파양세포에서 저선량의 감마선에 의해서 유도되는 적응 반응 (Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines)

  • 성진실;서창옥;김귀언
    • Radiation Oncology Journal
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 1994
  • 미량의 변이 유발소에 노출된 세포는 그 다음에 투여되는 다량의 변이 유발소에 대하여 내성을 갖게 된다. 이같은 적응 반응(adaptive response)은 대장균에서 처음으로 밝혀진 이후 주로 인체 말초 혈액 임파구에서 연구가 진행되어 왔다. 그러나 적응 반응이 세포 종류를 막론하고 존재하는 일반적인 현상인지에 대하여, 또한 세포의 고유한 방사선 감수성과의 관계나 그 기전 등에 대하여도 규명되어야 할 필요가 있다. 본 연구는 이같은 의문에 보다 접근하기 위하여 방사선에 매우 민감한 ataxia telangiectasia hemozygote, ataxia telangiectasia heterozygote, 그리고 정상인에서 유래한 인체 임파양세포주를 대상으로 1 cGy의 감마선을 조사하고 일정 시간이 지난 후 다시 50 cGy의 감마선을 조사하여, 감마선에 의해 유도되는 염색체 손상을 측정하였다. 그 결과 1 cGy 전처치시 그 다음 50 cGy에 의한 염색체 손상이 50 cGy 단독 대조군에 비하여 의의 있게 감소하여 적응 반응이 존재함을 알 수 있었다. 세가지 세포주의 방사선 감수성이 각기 달랐으나 적응 반응의 표현 양상은 이와 무관하게 유사하였다. 또한 염색체 손상의 복구에 필수적인 poly(ADP-ribose) polymerase를 억제하는 3-aminobenzamide를 50 cGy 직후에 투여한 실험에서는 적응 반응이 완전히 소실됨을 관찰하여 적응 반응이 어떤 종류의 방사선 손상의 복구 기전과 관계 있음을 추측케하였다. 따라서 임파양세포에서도 적응 반응이 존재함을 본 연구를 통하여 최초로 알 수 있었다. 이는 세포의 방사선 감수성과는 무관한 것으로 나타났으며 그 기전에 있어서는 아직 잘 알려지지 않은 손상 복구 기전을 유도하는 것으로 생각된다.반림프절 비대가 국소치유율, 무병생존율, 생존율에 영향을 미치는 인자이었고 이들 세가지 인자와 전산화단층촬영상의 대동맥림프절 비대가 생존율에 영향을 미치는 인자이었다. 조사선량이 많았으나 치료실패율이 현저하게 높았다. 따라서 이들 환자들을 효과적으로 치료하기 위하여 단순히 치료선량을 증가시키는 것보다 다른 보조적치료, 즉 약물치료와의 병용치료 등이 절실히 요구되며, 또한 국소재발의 억제가 원격전이를 감소시킬 수 있는 한 방법일 수 있다. 따라서 자궁경부암 환자의 방사선 치료에 가장 적합한 방법은 외부조사와 강내 치료를 병행하는 것이나 강내 치료가 불가능한 환자군에 대해서는 적극적 수술방법의 도입을 고려해야하겠다. 합병증의 증가가 관찰되지 않는 점으로 보아 본 연구를 계속 진행함으로써 더 좋은 결과를 얻을 수 있을 것으로 기대된다.기 혈색소 수치 (p<0.0001), 강내 조사(p<0.0004)였고, 조직학적 소견(p<0.29), 유도 화학요법과의 병행치료(p<0.87)는 통계학적으로 유의하지 않았다..0093{\pm}0.0047)\;D^2+(13.31{\pm}7.309$) 였었다. 감마선에 대한 중성자선의 상대적 생물학적 효과비 (RBE)는 y=aD+$bD^2$+c를 다음과 같은 식으로 변형시켜 계산하였다. $$\frac{[-a{pm}\sqrt{a^2-4b\;(c-y}}]}{2{\times}6}$$ 미세핵 발생빈도가 세포당 0.05와 0.8사이에서의 중성자선의 상대적 생물학적 효과비는 $2.37{\pm}0.17$ 이었다. 이상의 결과를 종합하여 볼 때 선량에 따른 미세핵 발생빈도는 기존의 방사선 감수성 test의 결과와 대동소이하여, 앞으로 방사선 감수성을 측정하는 방법으로 이용할 수 있으며, 또한

  • PDF

Differences of SRE (Serum Responsive Element) Activity and Gene Expression between AT5BIVA and LM217 Cells

  • Park, Eun-Kyung;Kim, You-Jin;Rhee, Yun-Hee;Hyesook Chang;Park, Kun-Koo
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.69-69
    • /
    • 1999
  • The human genetic disorder ataxia-telangiectasia (A-T) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in A-T, ATM, and the demonstration that it encodes a homologous of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provides support for a role for this gene in signal transduction.(omitted)

  • PDF