• Title/Summary/Keyword: asymptotically strictly pseudocontractive mapping

Search Result 3, Processing Time 0.026 seconds

STRONG CONVERGENCE THEOREM OF COMMON ELEMENTS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

  • Zhang, Lijuan;Hou, Zhibin
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.599-605
    • /
    • 2010
  • In this paper, we introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem, the set of common fixed points of an asymptotically strictly pseudocontractive mapping in a Hilbert space. We show that the iterative sequence converges strongly to a common element of the two sets.

STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS

  • He, Xin-Feng;Xu, Yong-Chun;He, Zhen
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we consider an iterative scheme for finding a common element of the set of fixed points of a asymptotically quasi nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common fixed point of a asymptotically quasi-nonexpansive mapping and strictly pseudocontractive mapping and the problem of finding a common element of the set of fixed points of a asymptotically quasi-nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.

REMARKS ON APPROXIMATION OF FIXED POINTS OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

  • Kim, Tae-Hwa;Kim, Eun-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.461-475
    • /
    • 2000
  • In the present paper, we first give some examples of self-mappings which are asymptoticaly nonexpansive in the intermediate, not strictly hemicontractive, but satisfy the property (H). It is then shown that the modified Mann and Ishikawa iteration processes defined by $x_{n+1}=(1-\alpha_n)x_n+\alpha_nT^nx_n\ and\ x_{n+1}=(1-\alpha_n)x_n+\alpha_nT^n[(1-\beta_n)x_n+\beta_nT^nx_n]$,respectively, converges strongly to the unique fixed point of such a self-mapping in general Banach spaces.

  • PDF