• Title/Summary/Keyword: asymmetric shock structure

Search Result 5, Processing Time 0.019 seconds

Design and Experimental Verification of Two Dimensional Asymmetric Supersonic Nozzle (이차원 비대칭형 초음속 노즐 설계와 실험적 검증)

  • Kim, Chae-Hyoung;Sung, Kun-Min;Jeung, In-Seuck;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.899-905
    • /
    • 2009
  • Most supersonic-flow test facility has axisymmetric nozzles or two-dimensional symmetric nozzles. Compared to these nozzles, a two-dimensional asymmetric nozzle has advantages of reducing low cost for various Mach number testing and undesirable flow structure such as shock wave reflection because the nozzle part can be directly connected to the test section part in this type of nozzle. The two-dimensional asymmetric nozzle, which was Mach number 2, was designed for supersonic combustion experiment. And it was verified with the numerical analysis and visualization of Mach wave. This study suggested the practical method for design and verification of supersonic two dimensional asymmetric nozzles.

Effects of Angles of Attack and Throttling Conditions on Supersonic Inlet Buzz

  • NamKoung, Hyuck-Joon;Hong, Woo-Ram;Kim, Jung-Min;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.296-306
    • /
    • 2012
  • A series of numerical simulations are carried out to analyze a supersonic inlet buzz, which is an unsteady pressure oscillation phenomenon around a supersonic inlet. A simple but efficient geometry, experimentally adopted by Nagashima, is chosen for the analysis of unsteady flow physics. Among the two sets of simulations considered in this study, the effects of various throttling conditions are firstly examined. It is seen that the major physical characteristic of the inlet buzz can be obtained by inviscid computations only and the computed flow patterns inside and around the inlet are qualitatively consistent with the experimental observations. The dominant frequency of the inlet buzz increases as throttle area decreases, and the computed frequency is approximately 60Hz or 15% lower than the experimental data, but interestingly, this gap is constant for all the test cases and shock structures are similar. Secondly, inviscid calculations are performed to examine the effect regarding angle of attack. It is found that patterns of pressure oscillation histories and distortion due to asymmetric (or three-dimensional) shock structures are substantially affected by angle of attack. The dominant frequency of the inlet buzz, however, does not change noticeably even in regards to a wide range of angle of attacks.

Hydrodynamics Simulation of the Off-Axis Cluster Merger Abell 115

  • Lee, Wonki;Kim, Mincheol;Jee, M. James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.60.3-61
    • /
    • 2018
  • Abell 115 is a renowned cluster merger at z=0.197. It exhibits an asymmetric X-ray distribution with cometary tails and a megaparsec-sized radio relic stretching in the northeastern direction from the core of the northern cluster. Many observations have concluded that this cluster merger has a large impact parameter, but there has been no numerical analysis on the structure of Abell 115. In this study, we simulate Abell 115 with Gadget2 N-body/SPH code to reproduce the X-ray and weak lensing features of Abell 115. We find a new plausible merger scenario of Abell 115, wherein the northern cluster is currently in an outgoing phase. The predicted X-ray emission has a similar morphology to the observed tail of the northern cluster. However, in order to reproduce the observed line-of-sight velocity and projected distance while maintaining the two systems gravitationally bound, the system should possess a large projection angle, which makes the shock look considerably more diffused than the observed radio relic.

  • PDF

Experimental study on seismic performance of concrete filled tubular square column-to-beam connections with combined cross diaphragm

  • Choi, Sung-Mo;Yun, Yeo-Sang;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.303-317
    • /
    • 2006
  • The connection with combined cross diaphragm is developed for the connection of square CFT column and steel beam and proposed to be used for the frame with asymmetric span length. The structural characteristics of this connection lie in the penetration of the beam flange in the direction of major axis through the column for the smooth flow of stress. The purpose of this study is to analyze the dynamic behavior and stress flow of suggested connection and to evaluate the resistance to shock of connection. Four T-type CFT column-to-beam specimens; two with combined cross diaphragm and the others with interior and through diaphragms, the existing connection types, were made for cyclic load test guided by the load program of ANSI/AISC SSPEC 2002. The results show that the proposed connection is more efficient than existing ones in terms of strength, stress flow and energy absorption and satisfies the seismic performance required in the region of weak/moderate earthquakes.

Crystal Structure of SAV0927 and Its Functional Implications

  • Jeong, Soyeon;Kim, Hyo Jung;Ha, Nam-Chul;Kwon, Ae-Ran
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.500-505
    • /
    • 2019
  • Staphylococcus aureus is a round-shaped, gram-positive bacterium that can cause numerous infectious diseases ranging from mild infections such as skin infections and food poisoning to life-threatening infections such as sepsis, endocarditis and toxic shock syndrome. Various antibiotic-resistant strains of S. aureus have frequently emerged, threatening human lives significantly. Despite much research on the genetics of S. aureus, many of its genes remain unknown functionally and structurally. To counteract its toxins and to prevent the antibiotic resistance of S. aureus, our understanding of S. aureus should be increased at the proteomic scale. SAV0927 was first sequenced in an antibiotic resistant S. aureus strain. The gene is a conserved hypothetical protein, and its homologues appear to be restricted to Firmicutes. In this study, we determined the crystal structure of SAV0927 at $2.5{\AA}$ resolution. The protein was primarily dimeric both in solution and in the crystals. The asymmetric unit contained five dimers that are stacked linearly with ${\sim}80^{\circ}$ rotation by each dimer, and these interactions further continued in the crystal packing, resulting in a long linear polymer. The crystal structures, together with the network analysis, provide functional implications for the SAV0927-mediated protein network.