• Title/Summary/Keyword: asymmetric rotor structure

Search Result 12, Processing Time 0.033 seconds

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

  • Hwang, Yong-Suk;Yoon, Myung-Hwan;Park, Jin-Cheol;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.266-274
    • /
    • 2017
  • In this paper, torques of two motors are compared by Finite Element Analysis (FEA). One has a symmetric rotor structure and the other has an asymmetric rotor structure. The comparison shows that the asymmetric rotor structured motor has reduced torque ripple compared to the symmetric. The torque of the compared motor models was analyzed by separating into magnetic torque and reluctance torque. Through the analysis of torque component separated, it is shown that the magnetic torque and the reluctance torque compensate each other in the motor with the asymmetric structure rotor. Here "compensate" means decrementing the effect of one or more harmonics. It is shown how this compensation appears between the magnetic torque and the reluctance torque by looking into back electro motive force (emf) and the relative permeability distribution of rotor core.

Rotor Initial Polarity Detection Method of Single-Phase PMSM Considering Asymmetric Air-Gap Structure (단상 영구자석 동기 전동기의 비대칭 공극 구조를 고려한 회전자 초기 자극 검출 기법)

  • Seo, Sung-Woo;Hwang, Seon-Hwan;Park, Jong-Won;Kim, Yong-Hyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.80-83
    • /
    • 2022
  • This paper proposes an initial rotor polarity detection algorithm of a single-phase permanent magnet synchronous motor (SP-PMSM) related to stable open-loop starting for sensorless operation. Generally, the SP-PMSM needs an asymmetric air-gap structure to can avoid the initial starting failure at zero torque point. Therefore, the rotor polarity information can be obtained by using the DC offset current direction of a stator current through a high frequency voltage injection into an SP-PMSM with an asymmetric air gap. In this paper, the proposed rotor initial polarity detection algorithm is verified through several experimental results.

An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance

  • Yoon, Myung-Hwan;Kim, Doo-Young;Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • Torque ripple is necessarily generated in interior permanent magnet synchronous motors (IPMSMs) due to the non-sinusoidal distribution of flux density in the air gap and the magnetic reluctance by stator slots. This paper deals with an asymmetric rotor shape to reduce torque ripple which can make sinusoidal flux density distribution in the air gap. Meanwhile the average torque is relatively increased by the asymmetric rotor. Response surface method (RSM) is applied to find the optimum position of the permanent magnets for the IMPSM with improved torque performance. Consequently, an asymmetric structure is the result of RSM and the structure has disadvantage of a mechanical stiffness. Finally, the performance of suggested shape is verified by finite element analysis and structural analysis is conducted for the mechanical stiffness.

An Experimental Study on the Wake Characteristics of a Quadrotor UAV (쿼드로터형 무인비행체의 후류 특성에 관한 실험적 연구)

  • Lee, Seungcheol;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • In the present study, we investigate the flow characteristics of a quadrotor UAV in a hovering mode by measuring multiple two-dimensional velocity fields in the wake. The experiment is conducted at Re = 24,000 in a chamber large enough to neglect the ground effect, where Re is the Reynolds number based on the rotor chord length and the rotor tip speed. The rotational speed of the rotor is determined by an optical tachometer so that the lift force can be balanced with the weight of the UAV. The velocity field measured on the center plane of the rotor shows that the vortices are shedding from the tip of the rotor, inducing large fluctuations in the streamwise velocity along the wake shear layer. The strength of the rotor-tip vortex shedding is asymmetric with respect to the rotor axis due to the interaction between the rotor and the wake centerline of each rotor is inclined to the center of the UAV due to the pressure difference caused by the induced velocity. The wake from each rotor moves closer to each other while traveling in the streamwise direction, and then is merged together inducing large fluctuations in the transverse velocity. Due to the wake merging, on the center plane of the UAV, the velocity increases in the streamwise direction showing two-peak structure in the streamwise velocity contours.

Wake Structure of Tip Vortex Generated by a Model Rotor Blade of NACA0015 Airfoil Section (NACA0015익형을 가지는 로터 깃 끝와류의 후류유동구조)

  • Sohn, Yong-Joon;Kim, Jeong-Hyun;Han, Yong-Oun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Evolution of tip vortex generated by a model rotor blade which has a symmetric blade section has been investigated by use of the laser doppler anemometry. Swirl and axial velocity components of tip vortex were measured by the phase averaging technique within one revolution of a rotor blade. It was found that tip vortex becomes matured until 27 degrees and diffuses afterwards with diffusing rate becoming slower compared to the case of the asymmetric blade section, but the tip loss was expected to become more substantial. Swirl velocity components were well fit to n=2 model of Vatistas within measured wake ages, showing the self-similarity exists for the swirl velocity components. The axial components were followed with Gaussian profiles, but had much higher peak values than those of the symmetric blade section.

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.

An Experimental Study on the Turbulence Structure of Tip Vortices Generated by a Rotor Blade at the Initial Wake Age (회전익 끝와류의 초기 난류 구조에 관한 실험적 연구)

  • Kim, Young Soo;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.661-669
    • /
    • 1999
  • The evolutionary structure of a tip vortex in the initial period have been investigated by the two-dimensional LDV system. Circumferential and axial components of mean velocities, their turbulences and Reynolds stresses were measured by the phase averaging technique at seven different wake ages within one revolution of the rotor. Core growth was also analyzed. It was resulted that circumferential velocity components showed a Rankine combined vortex shape and their circulation profiles viewed in the radial direction were close to the n = 2 model of Vatistas' algebraic formula, while axial velocity components seemed to have the Gaussian profiles In these measured ranges with the base width of three times of core radii. Peaks of circumferential velocities and core radii showed distinct asymmetric behaviors before the wake age of $150^{\circ}$ over inboard and outboard sides of the slipstream, but they became symmetric afterwards. Turbulence profiles which had two peaks Inside the core radii in the earlier wake age were also changed to single peaks after $150^{\circ}$. These trends imply that the tip vortex was barely mature at this wake age.

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by a Flexible Base Plate in a HDD (유연한 베이스 플레이트로 지지되는 회전 유연 HDD 디스크-스핀들계의 유한 요소 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.571-577
    • /
    • 2003
  • This research proposes a finite element method to determine the natural vibration characteristics of the spinning disk-spindle system in a HDD including the flexibility of supporting structure. Finite element equations of each substructure are derived with the introduction of consistent variables to satisfy the geometric compatibility at the internal boundaries. The natural frequencies and modes from the global asymmetric matrix equations of motion are determined by using the implicit restarted Arnoldi iteration method. The validity of the proposed method is verified by the experimental modal testing. It also shows that the flexibility of base plate plays an important role to determine the natural frequencies of the spinning disk-spindle system in a HDD.

  • PDF

A Study on Converter Topology to Drive Switched Reluctance Motor (SRM) (스위치드 릴럭턴스 전동기(SRM) 구동용 Converter Topology 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Switched Reluctance Motor (SRM) has a characteristic that the inductance changes very nonlinearly depending on the magnitude of the current and the relative position of the rotor and stator, and the torque is generated In consideration of these problems, many studies have been conducted on a topology for driving that can improve efficiency and performance in an existing asymmetric bridge converter in order to simplify the circuit and economic efficiency. Therefore, in this paper, we want to check the performance by comparing and analyzing each converter used by applying it as a topology for SRM driving. The driving converters applied to the comparison and analysis are Conventional C-dump, Modified C-dump, Energy efficient C-dump, Resonant C-dump converter with C-dump converter type structure and the most widely used asymmetric bridge converter and 6-Switch inverter that used for general motors.

Dynamic Simulation and Modelling of the Switched Reluctance Motor (SRM의 Dynamic Simulation과 Modelling에 관한 연구)

  • Lee Ju-Hyun;Chen Hao;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.922-925
    • /
    • 2004
  • The paper presents the component parts and their models of the Switched Reluctance motor drive system with the angle position-current chopping control and with the fixed angle pulse width modulation control. The calculation of the parameters and the simulated models based on the MATLAB SIMULINK software package are introduced by a four-phase 8/6 structure prototype with the four-phase asymmetric bridge power converter. The simulation of the prototype in the course of starting is made by the simulated models at the different control strategies and the different given rotor speed.

  • PDF