• Title/Summary/Keyword: asymmetric loading

Search Result 74, Processing Time 0.019 seconds

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

Study on the wheel allocation and the wheel momentum off-loading for COMS having asymmetric solar array configuration (비대칭 태양전지판 형상의 천리안위성 휠배치와 휠모멘텀조정에 관한 연구)

  • Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2013
  • The mission of a lot of satellites on geostationary orbit is the communication and/or the broadcasting. These satellites need a big power, so these have a large solar array. Recently, the new satellite for Earth environment monitoring is developing on geostationary orbit. The payload of Earth monitoring satellite requires better thermal condition on detector. Therefore this satellite uses a boom for the attitude stability instead of rejecting one-side solar array as a heat source. The other hand, it uses some momentum wheels being a more momentum capacity to control the large disturbance by solar pressure due to the asymmetric solar array configuration. In this paper, the analysis on the wheel allocation and the wheel off-loading for COMS is summarized and the results are verified by telemetry of COMS. COMS has no boom and a perfectly asymmetric solar array configuration, and it is operating well on geostationary orbit.

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

Evaluation of behavior of updated three-dimensional panel under lateral load in both independent and dependent modes

  • Rezaifar, Omid;Nik, Hamun Adeli;Ghohaki, Majid
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Three-dimensional panels are one of the modern construction systems which can be placed in the category of industrial buildings. There have always been a lot of studies and efforts to identify the behavior of these panels and improve their capacity due to their earthquake resistance and high speed of performance. This study will provide a comparative evaluation of behavior of updated three-dimensional panel's structural components under lateral load in both independent and dependent modes. In fact, this study tries to simultaneously evaluate strengthening effect of three-dimensional panels and the effects of system state (independent, L-shaped and BOX shaped Walls) with reinforcement armatures with different angles on the three-dimensional panels. Overall, six independent wall model, L-shaped, roofed L-shaped, BOX-shaped walls with symmetric loading, BOX -shaped wall with asymmetrical loading and roofed BOX-shaped wall were built. Then the models are strengthened without strengthened reinforcement and with strengthened reinforcements with an angle of 30, 45 and 60 degrees. The applied lateral loading, is exerted by changing the location on the end wall. In BOX-shaped wall, in symmetric and asymmetric loading, the load bearing capacity will be increased about 200 and 50% respectively. Now, if strengthened, the load bearing capacity in symmetric and asymmetric loading will be increased 3.5 and 2 times respectively. The effective angle of placement of strengthened reinforcement in the independent wall is 45 and 60 degrees. But in BOX-shaped and L-shaped walls, the use of strengthened reinforcement 45 degrees is recommended.

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

A STUDY ON THE EAST/WEST STATION KEEPING PLANNING CONSIDERING WHEEL OFF-LOADING

  • Lee, Sang-Cherl;Park, Bong-Kyu;Kim, Bang-Yeop;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.263-266
    • /
    • 2006
  • Now, on the developing COMS(Communication, Ocean and Meteorological Satellite) has solar panel on the South panel only. Therefore, the wheel off-loading has to be performed periodically to reduce a induced momentum energy by a asymmetric solar panel. One of two East/West station keeping maneuver to correct simultaneously longitude and eccentricity, orbit corrections may be performed during one of the two wheel off-loading manoeuvres per day to get enough observation time for meteorological and ocean sensor. In this paper, we applied a linearized orbit maneuver equation to acquire maneuver time and delta-V. Nonlinear simulation for the station keeping is performed and compared with general station keeping strategy for fuel reduction.

  • PDF

A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement

  • Khaled, Alhaifi;Ahmad Reza, Khorshidvand;Murtadha M., Al-Masoudy;Ehsan, Arshid;Seyed Hossein, Madani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.419-432
    • /
    • 2023
  • This paper studies the effects of porosity distributions on buckling and post-buckling behaviors of a functionally graded saturated porous (FGSP) circular plate. The plate is under the uniformly distributed radial loading and simply supported and clamped boundary conditions. Pores are saturated with compressible fluid (e.g., gases) that cannot escape from the porous solid. Elastic modulus is assumed to vary continuously through the thickness according to three different functions corresponding to three different cases of porosity distributions, including monotonous, symmetric, and asymmetric cases. Governing equations are derived utilizing the classical plate theory and Sanders nonlinear strain-displacement relations, and they are solved numerically via shooting method. Results are verified with the known results in the literature. The obtained results for the monotonous and symmetric cases with the asymmetric case presented in the literature are shown in comparative figures. Effects of the poroelastic material parameters, boundary conditions, and thickness change on the post-buckling behavior of the plate are discussed in details. The results reveal that buckling and post-buckling behaviors of the plate in the monotonous and symmetric cases differ from the asymmetric case, especially in small deflections, that asymmetric distribution of elastic moduli can be the cause.

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

Inelastic response of code-designed eccentric structures subject to bi-directional loading

  • Chandler, A.M.;Correnza, J.C.;Hutchinson, G.L.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 1997
  • The influence of bi-directional earthquake-induced loading on eccentric (plan-asymmetric) building systems has been investigated. In the first part of the study, comparisons have been made with equivalent results from uni-directional studies. The results are important in developing analytical models appropriate to the formulation of design recommendations. It is concluded that for valid comparisons, both perpendicular horizontal earthquake components must be considered when using models with transversely-orientated elements. In the second part of the study, an assessment has been made of a simplified, unidirectional (lateral) design approach. For stiffness-eccentric systems, the latter approach gives accurate and reasonably conservative estimates of the critical flexible-edge deformation, but may under estimate the stiff-edge element ductility demand by a factor of two in the short-period range.