• Title/Summary/Keyword: asymmetric flow pattern

Search Result 32, Processing Time 0.021 seconds

Characteristics of Bifurcation Phenomena of Symmetric Flow Pattern in a Plane Sudden-Expansion Flow (평면급확장유동내 대칭유동분기현상의 특성에 관한 연구)

  • Cho, Jin-Ho;Lee, Moon-J.;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.33-38
    • /
    • 2001
  • Bifurcation of unstable symmetric flow patterns to stable asymmetric ones in laminar sudden-expansion flow has been numerically investigated. Computations were carried out for an expansion ratio of 3 and over a range of the flow Reynolds numbers by using numerical methods of second-order time accuracy and a fractional-step method that guarantees divergence-free flowfields at all times. The critical Reynolds number above which bifurcation of pitchfork type to asymmetric flow pattern takes place is lower in a flow with a higher expansion ratio, in agreement with the previously reported results. The bifurcation diagrams show that the bifurcation takes place at a Reynolds number, $Re_c = 86.3$, higher than the value that has been reported. The lower critical Reynolds number may be due to deficiencies in their computations which employed SIMPLE-type relaxation methods rather than the initial-value approach of the present study. Characteristics of the flow development during the transition to asymmetric stable flow have been investigated by using spectral analysis of the velocity signals obtained by the simulations.

  • PDF

Heat/Mass Transfer and Flow Characteristics within a Film Cooling Hole of Square Cross Sections with Asymmetric Inlet Flow Condition (비대칭 입구조건을 갖는 정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.14-21
    • /
    • 2001
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet flow conditions. The asymmetric inlet flow condition is achieved by making distances between side walls of secondary flow duct and film cooling hole different; one side wall is $2D_h$ apart from the center of film cooling hole, while the other side wall is $1.5D_h$ apart from the center of film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. Swirl flow is generated at the inlet region and the heat/mass transfer pattern with the asymmetric inlet flow condition is changed significantly from that with the symmetric condition. At the exit region, the effect of mainstream on the inside hole flow is reduced with asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl flow generated by the asymmetric inlet condition.

  • PDF

Asymmetric Flow Phenomena and Top Surface Behavior in Slide-Gate Nozzle and Mold during Continuous Casting of Steel (철강 연속주조 슬라이드게이트 노즐 및 주형내 비대칭 유동 현상과 탕면 거동)

  • Min-Kyoung Kim;Tae-Wan Jang;Seong-Mook Cho
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.22-29
    • /
    • 2024
  • Steel is one of the most widely used metals for various industries in the world. Over 95% of steels in the world is manufactured from continuous casting processes. During continuous casting, there are many phenomena including fluid flow, heat transfer, solidification, particle transport, etc. in mold regions. Molten steel continuously flows into the mold through the nozzle, and generates asymmetric flow pattern. The asymmetry of flow behaviors affects the behavior of surface slag/molten steel interface on the top of molten steel pool. These phenomena are influential on the quality of final steel products. This work investigates the asymmetric flow and the top surface behaviors in mold region with a slide-gate nozzle during continuous casting of steel slabs, by applying lab-scale water model experiments.

Unsteady Flow in a Cavity Induced by An Oscillatory External Flow (외부유동에 의한 캐버티 내의 비정상 유동특성)

  • 서용권;박준관;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.105-116
    • /
    • 1996
  • In this paper, we report the experimental results for the flow pattern and the material transport around a cavity subject to a sinusoidal external flow at the far region to ward the open side of the cavity. A tilting mechanism is used to generate a oscillatory flow inside a shallow rectangular container having a cavity at one side. The surface flow visualization is performed to obtain the unsteady behavior of vortices generated at two edges situated at the entrance of the cavity. It was found that at the period 4.5 sec., the behavior of the vortices is asymmetric, and there exists a steady residual flow in the cavity. The bottom flow patterns are also visualized. There are two regions outside of the cavity where the bottom fluid particles concentrate. The material transport in this flow model is very peculiar; fluid particles in the cavity flows outward through the passage along the walls starting from the edges, and particles in the outer region approach the cavity from the central region.

  • PDF

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

Determination of Flow Direction from Flow Indicators in the Muposan Tuff, Southern and Eastern Cheongsong, Korea (청송 남.동부 무포산응회암의 흐름 지시자로부터 유향 결정)

  • Ahn, Ung-San;Hwan, Sang-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.319-330
    • /
    • 2007
  • The Muposan Tuff is a stratigraphic unit which is distinguished as a cooling unit in the volcanic rocks of the northeastern Kyeongsang Basin. The Muposan Tuff commonly belongs to tuff field according to the granulometric classification and to vitric tuffs according to the constituent classification. The tuffs are mostly densely to partially welded to include very flattened and sometimes stretched pumices and shards, and involve several flow indicator and lateral gradings in maximum diameter and content of their constituents. Movement pattern from flow lineation, lithic and pumice imbrications, asymmetric flow folds, and lateral gradings in maximum diameter and content of their constituents indicate that the Muposan Tuff had a source from the southeastern part.

Asymmetric Electrohydrodynamic Flow of Dielectric Liquid around Symmetric Coplanar Electrodes (대칭형상의 평판 전극 주위의 비대칭 절연유체 유동)

  • Baek, Kwang Hyun;Cho, Dong Sik;Suh, Yong Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.48-52
    • /
    • 2013
  • This paper presents experimental observation of asymmetric electrohydrodynamic flow generated around a pair of symmetric coplanar electrodes. Electrodes are attached on the bottom of the cavity containing a dielectric liquid, i.e., a mixture of dodecane and 0.5% wt Span80. In the first experiment, an AC voltage of 1500 V is applied with the frequency varying in the range 10~500 hz and the left electrode being grounded. The flow patterns show that the center line of vortices is unexpectedly tilted to the left side. If the right side electrode is grounded, the center line is tilted to the right side. The magnitude of the fluid velocity shows an irregular variation with the frequency in the range 10 Hz~100 Hz, beyond which it simply decays. In the second experiment, we applied fixed AC with 1000 V and 60 Hz superposed by DC voltage varying in the range -1000 V ~ +1000 V. The center line of the flow pattern is tilted to the right side with positive DC voltage and to the left side with negative DC. We have managed to show that the flow pattern can be symmetric with a suitable combination of DC and AC, e.g., DC 850 V plus AC 1000 V with the frequency 10 Hz.

The Flow Characteristics in a Shallow Rectangular Tank by Vortex Shedding (보텍스 쉐딩에 의한 얕은 직사각형통 내에서의 유동특성)

  • 서용권;문종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2122-2130
    • /
    • 1993
  • A numerical and experimental study has been performed on the flow in a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The numerical analysis shows that the pattern of vortex shedding changes considerably when the Reynolds number $R_e$ is varied from 500 to 7500. It is symmetric for $R_e$ <1500 and asymmetric for $R_e$ > 1500. The kinetic energies of the right-hand and left-hand sides of the vertical plate are used to quantify the degree of the asymmetry. Experimental visualization is carried out at $R_e$ = 3876 and 52000. The development of the streamline pattern at $R_e$ = 3876 is in closer agreement with the numerical result at $R_e$ = 1000 than that at $R_e$ =3876. The asymmetric pattern is observed at $R_e$ = 52000.

Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity (모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성)

  • 이진호;이동진;전창덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

Theoretical Prediction of Lung Hyperinflation(LHI) Due to Asymmetric Pressure-Flow Characteristics of Human Airways During High Frequency Ventilation (HFV)

  • Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 1990
  • The hypothesis of asymmetric resistance to explain the phenomenon of lung hyperinflation (LHI) during hlgh frequency ventilation (HFV) was quantitatively studied. LHI was predicted by modeling the ism-volume pressure-flow (IVPF) data from 5 human subjects using the empirical Rohrer's equation. Non-steadiness during HFV was compensated by em- ploying recently proposed volume-frequency diagram. Tidal volume and ventilation frequency were 100 ml and 20 Hz, respectively. Airflow pattern was a symmetric sinusoid. The predic- tion results of mean pressure drop across the airways were averaged for those 5 subjects, and compared with zero by one-sided student's t-test. A marginally significant (P<0.1) increase in mean pressure drop was observed during HFV at low lung volumes (below FRC) , which could increase mean lung volume up to one liter When the lung volume was above FRC, no significant LHI (P >0.25) was resulted. LHI seemed to be inversely related to the lung volume. These results recommend to clinically apply HFV only at lung volumes above FRC.

  • PDF