• Title/Summary/Keyword: asymmetric bilayered ShuffleNet

Search Result 5, Processing Time 0.017 seconds

Wavelength Division Mutiplexing Ring using Asymmetric Bilayered ShuffleNet (비대칭 이중층 셔플넷 토폴로지를 이용한 파장분할다중화 링)

  • 지윤규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.1-7
    • /
    • 2004
  • A regular logical topology requires little processing time for routing purposes which may be a desirable property for high-speed networks. Asymmetric bilayered ShuffleNet, proposed by us as a logical topology, can be used to a wavelength division multiplexing ring network to increase the network capacity compared to ShuffleNet. In this paper, asymmetric bilayered ShuffleNet is imbedded on a wavelength division multiplexing ring with the objective of minimizing the total number of wavelengths assigned.

Design of a Wide-Area Optical Network using Asymmetric Bilayered ShuffleNet (하나 걸른 행과 연결된 이중층 셔플넷 토폴로지를 이용한 광 Wide-Area 네트워크 설계)

  • Ji, Yun-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.19-25
    • /
    • 2002
  • A regular virtual topology requires little processing time for routing purposes which may be a desirable property for high-speed networks. Asymmetric bilayered ShuffleNet, proposed by us as a virtual topology, can be more efficient to be used to design a wide-area optical network compared to ShuffleNet. In this paper, asymmetric bilayered ShuffleNet is imbedded on a given physical topology with the objective of minimizing the total message delay.

Every-other-row-connecting bilayered shufflenet for WDM multihop lighwave networks (WDM 멀티홉 광 통신망을 위한 하나 걸른 행과 연결된 이중층 셔플넷 토폴로지)

  • 지윤규;심현정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.1064-1074
    • /
    • 1997
  • In this paper we propose an every-other-row-connecting bilayered ShuffkeNet for optical WDM(wavelength division multiplexing) multihop networks. We calculate the diameter and the average number of hops of the proposed every-other-row-connecting bilayered ShuffleNet. Using the result, we also calcuate throughputs and delays of the proposed topology, which show higher efficiencies compared to the conventional ShuffleNet, the bilayered ShuffleNet and asymmetric bilayered ShuffleNet.

  • PDF

WDM Cross-Connected Star Topology using Asymmetric Bilayered ShuffleNet for Multihop Lightwave Network (비대칭 이중층 셔플넷을 이용한 멀티홉 WDM Cross-Connected Star Topology)

  • Ji, Yun-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.41-45
    • /
    • 2002
  • Asymmetric bilayered ShuffleNet topology is used to implement the WDM cross-connects as central hubs. The advantage of the implementation is the reduction of the total number of WDM cross connects required by a half, the average number of hops, and average delay.

Performance Analysis and Channel Sharing of Asymmetric Bilayered ShffleNet WDM Network (비대칭 이중층 셔플넷 구조를 갖는 WDM 네트워크의 성능분석 및 채널 공유)

  • 여인영;이승원;신서용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.802-812
    • /
    • 2000
  • Multihop lightwave networks are the optical-fiber based local communication systems that employ WDM(Wavelength Division Multiplexing) technology to fully use the enormous fiber bandwidth without requiring any tunable tranceives. In this paper, we introduce a novel ShuffleNet topology, asymmetric bilayered ShuffleNet(ABS) topology as a multihop WDM network technique. For 1Gb/s transmission system, we compared ABS topology with previously reported ones in terms of common network parameters such as average number of hops, throughput, time delay, and network power function. Through the analysis, the performance of ABS topology was proven to be superior to the existing ones. To decrease the amount of hardware required for implementing ABS system, we also proposed a new WDM channel sharing scheme. For (2, 3) ShuffleNet topology system, the number of wavelengths needed in the system can be reduced dramatically from 96 to 4 by using new scheme.

  • PDF