• Title/Summary/Keyword: astronomical instrument

Search Result 217, Processing Time 0.023 seconds

Design of Integrated Control Software for Automated Observing System

  • Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong;Im, Myungshin;Lee, Sang-Yun;Gibson, Coyne A.;Kuehne, John;Marshall, Jennifer
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2017
  • Remote and robotic telescopes are the most effective instrument for astronomical survey projects. The system is based on the dynamic operation of all astronomical instruments such as dome and telescope control system (TCS), focuser, filter wheel and data taking camera. We adopt the ASCOM driver platform to control the instruments through the integrated software. It can convert different interface libraries from various manufacturers into a uniform standard library. This allows us to effectively control astronomical instruments without modifying codes. We suggest a conceptual design of software for automation of a small telescope such as the new wide-field 0.25m telescope at McDonald Observatory. It can also be applied to operation of multi-telescopes in future projects.

  • PDF

Observation Error During the Period of the Joseon Dynasty

  • Lee, Ki-Won
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.38.2-38.2
    • /
    • 2008
  • In Korean historical documents, there are a great number of the records for various astronomical events. In particular, historical documents of the Joseon dynasty also have the records containing observational data by an astronomical instrument. However, a quantitative analysis for the accuracy of observational values have never been studied, although there are some studies on the truth of the records themselves. Hence, we investigated observation errors during the period of the Joseon dynasty from the records of Joseon-Wang-Jo-Sil-Lok (the Annals of the Joseon Dynasty) and Seung-Jeong-Won-Il-Gi (Daily Records of the Royal Secretariat). We used the records of the Mars, supernova 1604, and Halley's Comet, and found that observational values before the Hideyoshi invasions in 1592 are relatively more accurate than those after then. However, because the number of cases used in this study is small, we think that more studies are needed to confirm our results. Nonetheless, we reckon our work will be of service to understand astronomical records of the Joseon dynasty.

  • PDF

King Sejong′s Scientific Achievements and Astronomical Instruments (세종의 과학과 의표창제)

  • 한영호;남문현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.707-710
    • /
    • 1996
  • During King Sejong's reign in early Chosen Dynasty, the Korean science had been in full bloom. Among the many splendid achievements of the period, though most of them are not extant, astronomical instruments and clocks made for equipping the Royal Observatory are taken as typical works that reflect the characteristics of the King's scientific projects and discussed in the view point that what and how much a well-planned drive and a future-oriented leader can accomplish.

  • PDF

The Mechanical and Cryogenic Design of IGRINS

  • Park, Chan;Lee, Sung-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.154.1-154.1
    • /
    • 2011
  • IGRINS (Immersion Grating Infrared Spectrometer) is a cross-dispersed high resolution near-infrared spectrograph whose primary disperser is a silicon immersion grating (SIG) and cross-dispersers are two volume phase holographic gratings (VPHG). IGRINS covers the full ranges of H and K astronomical wavelength bands at a single exposure with the spectral resolution of 40,000. The overall layout of the IGRINS Cryostat is a $960{\times}600{\times}380$ cubic millimeter rectangular box and the whole optical train is sitting on an $880{\times}520{\times}50\;mm^3$ rectangular Optical Bench. The total volume of the instrument has been revolutionarily reduced and remained compact for the spectral coverage and sensitivity of a high resolution spectrograph in infrared. We, in this presentation, introduce the design models, the structural and thermal analysis results of the mechanics and cryogenics of IGRINS.

  • PDF

A NUMERICAL METHOD TO ANALYZE GEOMETRIC FACTORS OF A SPACE PARTICLE DETECTOR RELATIVE TO OMNIDIRECTIONAL PROTON AND ELECTRON FLUXES

  • Pak, Sungmin;Shin, Yuchul;Woo, Ju;Seon, Jongho
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.111-117
    • /
    • 2018
  • A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.

The Proton Contamination Problem of RBSPICE's electron data during March 1, 2013 storm event

  • Kim, Hang-Pyo;Hwang, Junga;Choi, Eunjin;Park, Jong-Seon;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.95.1-95.1
    • /
    • 2013
  • The RBSPICE (Radiation Belt Storm Probes Ion Composition Experiment) is one of five instrument suites onboard the twin Van Allan Probes (or Radiation Belt Storm Probes; RBSP), launched August 30, 2012 by NASA. One of science targets of RBSPICE instrument is to determine "how changes in that ring current affect the creation, acceleration, and loss of radiation belt particles?". For that purpose, it measures ions and electrons simultaneously. Ion's energy range is from ~20 keV to ~1 MeV and electron's energy channel is from ~35 keV to 1 MeV in order to provide supplementary information about the radiation belts. In this paper, we investigate a reliability of the electron flux measured from the RBSPICE by comparing with ECT (The Energetic Particle, Composition and Thermal Plasma Suite) data. We found there is a critical proton contamination problem in the electron channels of ~ 1MeV of RBSPICE observations during one moderate storm event of Sym H ~ -76 nT on March 1, 2013.

  • PDF

Electrostatic upper-hybrid waves and energetic electrons in the Earth's radiation belt

  • Hwang, Junga;Shin, Dae-Kyu;Yoon, Peter H.;Kurth, William S.;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.42.2-43
    • /
    • 2016
  • Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecraft. In the literature upper-hybrid emissions are used for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of energetic electrons in generating such fluctuations has not been discussed. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) suite onboard the Van Allen Probes. Combined with theoretical calculation, it is demonstrated that the peak intensity associated with the upper-hybrid fluctuations is predominantly determined by tenuous but energetic electrons, and that denser and less energetic background electrons do not contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are useful not only for the determination of the electron density, but also they contain information on the ambient energetic electron population as well.

  • PDF

Software Design of CQUEAN

  • Jeong, Hyeon-Ju;Park, Won-Kee;Kim, Eun-Bin;Choi, Chang-Su;Pak, Soo-Jong;Im, Myung-Shin;Kim, Jung-Hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • We are developing a CCD camera named CQUEAN (Camera for Quasars in Early Universe) to search for quasars at z > 7. CQUEAN has a 1024*1024 deep depletion CCD chip and will be attached to 2.1m Otto-Struve Telescope at McDonald Observatory, USA. Although commercial software for the CCD camera is provided by the vendor, we are going to develop our own software to control the other instruments as well, to carry out efficient observation. There are four major parts in our software: Instrument control part controls the camera and filter wheel to obtain imaging data. Quick look window is to display acquired imaging data for quick inspection. Telescope control part interfaces with Telescope Control System (TCS) to move the telescope and to get time or coordinate information. Finally, Observation scripting facility part carries out a series of short exposures in a batch. The whole software will be written in python on linux platform, using the instrument control software libraries provided by the vendors.

  • PDF

CALIBRATION PROCESS OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 검교정)

  • Lee, D.H.;Nam, U.W.;Kim, G.H.;Pak, S.;Zemcov, M.;Bock, J.J.;Battle, J.;Sullivan, I.;Mason, P.;Tsumura, K.;Matsumoto, T.;Matsuura, S.;Renbarger, T.;Keating, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.169-175
    • /
    • 2007
  • The international cooperation project CIBER (Cosmic Infrared Background ExpeRiment) is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. Currently, all the subsystems have been built, and the integration, testing, and calibration of the CIBER system are on process for the scheduled launch in June 2008.

INTERNATIONAL COOPERATION OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 국제 공동 연구)

  • Lee, D.H.;Nam, U.W.;Lee, S.;Jin, H.;Yuk, I.S.;Kim, K.H.;Pak, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.