• Title/Summary/Keyword: astronomical instrument

Search Result 217, Processing Time 0.023 seconds

OPTO-MECHANICAL DESIGN OF THE KASINICS (KASINICS의 광기계부 설계)

  • Yuk, I.S.;Lee, S.L.;Jin, H.;Seon, K.I.;Pak, S.;Lee, D.H.;Nam, U.W.;Moon, B.K.;Cha, S.M.;Han, J.Y.;Kyeong, J.M.;Kim, K.H.;Yang, J.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.143-149
    • /
    • 2005
  • KASI (Korea Astronomy and Space Science Institute) is developing the near-infrared camera system named KASINICS (KASI Near-Infrared Camera System) which will be installed at the 60cm f/13.5 Ritchey-Chretien telescope of the Sobaeksan Optical Astronomy Observatory (SOAO). The camera system is optimized for JHKL bands and has a 6 arcmin FOV. The optical system consists of two spherical mirrors and a 8-position filter wheel. With the exception for the dewar window, all optical elements are cooled inside cryogenic dewar. Since the Offner system is adopted to prevent thermal noises from outside of the telescope primary mirror, the secondary mirror of the Offner system acts as a cold Lyot stop. The optical performance does not change by temperature variations because the Aluminum mirrors contract and expand homogeneously with its mount. We finished the design and fabrication of the optical parts and are now aligning the optical system. We plan to have a test observation on 2006 January.

GHOST ANALYSIS FOR THE OPTICS SYSTEM OF THE KASINICS (KASINICS 광학계의 고스트 분석)

  • Lee, Sung-Ho;Yuk, In-Soo;Jin, Ho;Pak, Soo-Jong;Han, Jeong-Yeol;Lee, Dae-Hee;Kong, Kyung-Nam;Cho, Seung-Hyun;Park, Young-Sik;Park, Jang-Hyun;Han, Won-Yong
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.151-161
    • /
    • 2005
  • The reimaging optics of the KASINICS (KASI Near Infrared Camera System) includes many transparent components like an entrance window, band-pass filters, and blocking filters. As observational targets or in-field background objects, bright stars may cause optical ghosts that can significantly degrade the system performance of the KASINICS. We estimated analytically the relative brightness of ghost components with respect to a point source and examined the effects of tilting optical components as a method of suppressing ghosts. We also performed numerical ray tracings including all the optical components and found the results are consistent with those of the analytic estimations. We conclude that the KASINICS will not suffer from significant ghost effects with appropriate anti-reflection coatings and fittings for the optical components.

Progress report on CQUEAN (Camera for QUasars in EArly uNiverse)

  • Park, Won-Kee;Kim, Eun-Bin;Choi, Chang-Su;Lim, Ju-Hee;Kim, Jin-Oung;Jeong, Hyeon-Ju;Oh, Hee-Young;Pak, Soo-Jong;Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • We report the current status of CQUEAN (Camera for QUasars in EArly uNiverse) development. CQUEAN is an optical CCD camera which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1${\mu}m$, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A telescope interface containing a focal reducer is being designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. Instrument control software will be written with python on linux platform. We are carrying out lab tests to investigate the characteristics of the system components in order to maximize the observational efficiency. Preliminary results of the tests will be presented. CQUEAN is expected to see the first light during summer season of 2010.

  • PDF

Early Science Results from CQUEAN Commissioning Observation : Unique Views on Gamma Ray Bursts to High Redshift Quasars

  • Im, Myung-Shin;Pak, Soo-Jong;Park, Won-Kee;Choi, Chang-Su;Jeon, Yi-Seul;Kim, Eun-Bin;Jeong, Hyeong-Ju;Kim, Jin-Young;Lim, Ju-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2010
  • CQUEAN (Camera fo QUasars in EArly uNiverse) is a newly developed camera by CEOU for the 2.1m telescope at the McDonald Observatory, Texas, USA. We report the early science results from the commissioning run of CQUEAN which include the observations of the gamma-ray burst (GRB) afterglows and quasars at z ~ 5.5. Although the data were originally taken to test the instrument performance, the results are already very encouraging. We uncovered GRB afterglows at z = 0.8 - 1.4, with our data being used for the international collaboration research to understand the nature of GRBs. The unique filter sets we employed are providing the data which are effective for selecting quasars at z ~ 5.5. The special aspects of CQUEAN - high sensitivity at 0.8-1.1 ${\mu}m$ and fast readouts - will allow us to produce many interesting through surveys of high redshift quasars and fast follow-up of transient objects such as GRBs and exoplanets in future.

  • PDF

Wide-Field Imaging Telescope-0(WIT0): A New Wide-Field 0.25 m Telescope at McDonald Observatory

  • Lee, Sang-Yun;Im, Myungshin;Pak, Soojong;Ji, Tae-Geun;Lee, Hye-In;Hwang, Seong Yong;Marshall, Jennifer;Prochaska, Travis;Gibson, Coyne A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2017
  • A small wide-field imaging telescope is a powerful instrument to survey the Universe: wide-field image can monitor the variability of many sources at a time, e.g. young stellar objects and active galactic nuclei, and it can be an effective way to locate transient sources without precise positional information such as gravitational wave sources or some gamma-ray bursts. In February 2017, we installed a 0.25 m f/3.6 telescope on the McDonald 0.8 m telescope as a piggyback system. With a $4k{\times}4k$ CCD camera, the telescope has a $2.35{\times}2.35deg$ field-of-view. Currently, it is equipped with Johnson UBVRI filters and 3 narrow-band filters: $H{\alpha}$, OIII and SII. We will present the installation process, and the telescope performance such as detection limit and image quality based on the data from commissioning observations. We will also discuss possible scientific projects with this system.

  • PDF

REQUIREMENTS AND FEASIBILITY STUDY OF FPC-G FINE GUIDING IN SPACE INFRARED TELESCOPE, SPICA (대형 적외선 우주망원경 SPICA/FPC-G의 정밀 별추적 요구사항과 타당성 연구)

  • Jeong, Woong-Seob;Lee, Dae-Hee;Pyo, Jeonghyun;Moon, Bongkon;Park, Sung-Joon;Ree, Chang Hee;Park, Youngsik;Han, Wonyong;Nam, Ukwon;Matsumoto, Toshio
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.5
    • /
    • pp.391-397
    • /
    • 2012
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. It will achieve the high resolution as well as the unprecedented sensitivity from mid to far-infrared range. The FPC (Focal Plane Camera) proposed by KASI as an international collaboration is a near-infrared instrument. The FPC-S and FPC-G are responsible for the scientific observation in the near-infrared and the fine guiding, respectively. The FPC-G will significantly reduce pointing error down to below 0.075 arcsec through the observation of guiding stars in the focal plane. We analyzed the pointing requirement from the focal plane instruments as well as the error factors affecting the pointing stability. We also obtained the expected performance in operation modes. We concluded that the FPC-G can achieve the pointing stability below 0.075 arcsec which is the requirement from the focal plane instruments.

VPH Gratings for Near-Infrared Spectrographs

  • Lee, Sung-Ho;Deen, Casey;Chun, Moo-Young;Kim, Kang-Min;Yuk, In-Soo;Park, Chan;Oh, Hee-Young;Rukdee, Surangkhana;Jeong, Hwa-Kyung;Pak, Soo-Jong;Gully-Santiago, Michael;Lee, Han-Shin;Strubhar, Joseph;Rafal, Marc;Jaffe, Daniel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.150.2-150.2
    • /
    • 2011
  • Volume Phase Holographic (VPH) gratings are getting more popular as dispersion elements in spectrographs. High efficiency, compact configuration, and easy handling are driving many visual spectrographs to use VPH gratings for their main dispersers or for their cross-dispersers in higher resolution spectrographs. More recently, VPH gratings are being adopted in near-infrared by some spectrographs and by a number of next generation instrument projects. IGRINS (Immersion Grating Infrared Spectrograph) uses a VPH grating as a cross-disperser in each H or K band arm. J or H band performance of VPH gratings has been proven by other instruments. But K-band VPH gratings are new to the field. In this presentation, we are going to present test results we have got so far for verification of H-band VPH gratings and development of K-band VPH gratings.

  • PDF

Wide-field and Deep Survey of Nearby Southern Clusters of Galaxies

  • Rey, Soo-Chang;Sung, Eon-Chang;Jerjen, Helmut;Lisker, Thorsten;Chung, Ae-Ree;Kim, Suk;Lee, Young-Dae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.121-121
    • /
    • 2011
  • Thanks to KMTNet's wide field of view, it is time to implement imaging survey of extensive area of clusters of galaxies in the southern sky with modern instrument. As part of potential long-term survey of nearby (D < 50 Mpc) well-known clusters of galaxies, we propose a wide-field and deep survey of Fornax cluster as a first step of the project. By imaging the 400 square deg region (100 fields) enclosed within the five times virial radius of the Fornax cluster, in three SDSSfilters(g', r', i'), we can provide an unprecedented view of structure of Fornax cluster using sample from giant to dwarf galaxies. We will secure galaxies with brightness comparable to the limiting magnitude (r'=23.1 AB mag) of SDSS. Furthermore, we also request extremely deep (limiting surface brightness of ~ 28 mag $arcsec^{-2}$forr'band) survey for the central region (16 square degree, i.e., four fields) of Fornax cluster. This will allow us to detect the diffuse intracluster light (ICL) that permeates clusters as a valuable tool for studying the hierarchical nature of cluster assembly. In order to complete whole survey, about 285 hr observing time (without overhead) is required. By combining data available at other wavelengths, it will offer unique constraints on the formation of large-scale structure and also provide important clues for theories of galaxy formation and evolution. Our proposed survey will be implemented in the close collaboration with researchers in various countries (Germany, Australia, UK, USA) and ongoing project (e.g., SkyMapper).

  • PDF

Developments of the Wide Wavelength Range Polarimeter of the Domeless Solar Telescope at the Hida Observatory

  • Anan, Tetsu;Ichimoto, Kiyoshi;Oi, Akihito;Ueno, Satoru;Kimura, Goichi;Nakatani, Yoshikazu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • We are developing a new universal spectropolarimeter on the Domeless Solar Telescope (DST) at the Hida Observatory to realize precise spectropolarimetric observations in a wide range of wavelength in visible and near infrared. The system aims to open a new window of plasma diagnostics by using Zeeman effect, Hanle effect, Stark effect, impact polarization, and atomic polarization for measuring the external magnetic field, electric field, or an anisotropy in the excitation of the atoms. The polarimeter is a successor of formerly developed polarimeter on DST, which make possible to observe a polarization in a photospheric spectral line with polarimetric accuracy of 10-2 (Kiyohara et al. 2004). The new system consists of a 60cm aperture vacuum telescope, a high dispersion vacuum spectrograph, polarization modulator / analyzer composed of a rotating waveplate whose retardation is constant for a wide range of wavelength and Wallaston prism, and a fast and large format CCD camera or IR camera. Spectral images in both orthogonal polarizations are taken simultaneously with a frame rate of ~20Hz while the waveplate rotates continuously in a rate of 1rev./sec. Thus It takes 5 ~ 60 sec to observe polarization with accuracy of 10-3 in a wide wavelength range (400 - 1100nm). We also examined a polarimetric model of the telescope with accuracy of 10-3 to calibrate instrumental polarization on some wavelengths. In this talk, I will focus on the performance of the instrument.

  • PDF

IGRINS : Mirror Mounts Optomechanical Design

  • Rukdee, Surangkhana;Park, Chan;Lee, Sung-Ho;Jaffe, Daniel T.;Lee, Han-Shin;Oh, Hee-Young;Jung, Hwa-Kyung;Yuk, In-Soo;Strubhar, Joseph;Kim, Kang-Min;Chun, Moo-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.155.1-155.1
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The other flat fold mirrors are designed within the limited area. Each of those includes the features of 3 axial hard points and 2 radial hard points with one spring plunger in order for the proper deflection of the mirror. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability and the thermal behavior of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF