• Title/Summary/Keyword: astronomical instrument

Search Result 217, Processing Time 0.025 seconds

A small-scale H-alpha eruption in the north polar limb of the Sun observed by New Solar Telescope

  • Kim, Yeon-Han;Park, Young-Deuk;Bong, Su-Chan;Cho, Kyung-Suk;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2010
  • The New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO) is the recently constructed world largest 1.6 m optical solar telescope on the ground. We took an observation of the north polar limb in H-alpha line center wavelength on 2009 August 26 with the instrument at Nasmyth focus of the NST and found a remarkable small-scale H-alpha eruption from 18:20 UT and 18:45 UT. The eruption occurred with a relatively slow speed of about 10 km/s in early stage and a slight acceleration up to 20-30 km/s in later stage. We also found that the eruption shows a deflection along the pre-existing magnetic field as well as several interesting features such as bifurcation, rotation, horizontal oscillation, and direction and thickness change of its structure during the eruption. In this talk, we will report the observational properties of the small-scale eruption observed by the NST and discuss their implication on magnetic reconnection.

  • PDF

Development of SPICA FPC

  • Lee, Dae-Hee;Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Hyung-Mok;Park, Young-Sik;Ree, Chang-Hee;Moon, Bong-Gon;Pyo, Jeong-Hyun;Park, Sung-Jun;Han, Won-Yong;Kim, Geon-Hee;Takeyama, Norihide
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2010
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) is a next generation infrared space telescope being prepared by JAXA, ESA and other international collaborators. We propose to develop FPC (Focal Plane Camera) consisting of two near-infrared cameras: FPC-G (I band) for focal plane guidance and FPC-S (0.7 - 5 um) for a back-up of FPC-G and a NIR instrument for scientific observations. In this talk, we introduce the requirement and the design concept of the FPC as well as the development strategy of the project.

  • PDF

Overview of KMTNet Control Software

  • Cha, Sang-Mok;Lee, Chung-Uk;Lee, Yongseok;Kim, Dong-Jin;Lee, Dong-Joo;Kim, Seung-Lee;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.70.3-70.3
    • /
    • 2018
  • 외계행성 탐색시스템의 망원경-카메라 제어 시스템 및 소프트웨어 구성과 관측 유틸리티에 대해 소개한다. 망원경 제어 소프트웨어는 천문 위치보정, 포인팅, 돔 회전 등을 담당하는 PC-TCS 프로그램, 망원경 적경-적위 축 서보 제어를 담당하는 full-closed loop PID 컨트롤 프로그램, 포커서, 필터박스, 돔 셔터, 주경냉각, 온도 모니터 등의 보조 시스템을 제어하는 AUX controls 프로그램으로 구성된다. 카메라 제어 소프트웨어는 모자이크로 구성된 여러 CCD를 각각 독립적으로 제어하는 IC(Instrument Control) 패키지와 이들을 총괄 제어하는 ICS(IC Science) 패키지로 구성되며 망원경과 카메라 소프트웨어의 인터페이스 역할을 하는 TCS Agent 프로그램이 포함된다. 관측 진행을 돕는 유틸리티로서 관측제어 명령어 입력 및 관측 스크립트 구동 기능을 제공하는 OBS Agent 프로그램과 가이드 CCD를 이용한 시상 모니터링 및 자동초점조정 프로그램을 개발하여 활용하고 있다. 각 소프트웨어는 UDP, TCP/IP, RS-232, Redis server 등 다양한 인터페이스를 통하여 서로 통신하며, CCD 영상 자료 전달을 위해 RAM(Random Access Memory) 디스크와 Network File System(NSF)을 이용하고 있다.

  • PDF

SENSITIVITY CALCULATIONS FOR THE COSMIC IR BACKGROUND OBSERVATIONS BY MIRIS (과학기술위성 3호 다목적 적외선 영상시스템 적외선 우주배경복사 관측 감도 계산)

  • Lee, Dae-Hui;Lee, Seong-Ho;Han, Won-Yong;Park, Jang-Hyeon;Nam, Uk-Won;Jin, Ho;Yuk, In-Su;Park, Yeong-Sik;Park, Seong-Jun;Lee, Hyeong-Mok;Park, Su-Jong;Matsumoto, Toshio;Cooray, Asantha
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.177-181
    • /
    • 2007
  • We present the sensitivity calculation results for observing the Cosmic Infrared Background (CIRB) by the Multi-purpose IR Imaging System (MIRIS), which will be launched in 2010 as a main payload of the Science and Technology Satellite 3 (STSAT-3). MIRIS will observe in I ($0.9{\sim}1.2um$) and H ($1.2{\sim}2.0um$) band with a $4{\times}4$ degree field of view to obtain the large scale structure (${\sim}3$ degree) of the CIRB. With the given specifications of the MIRIS, our sensitivity calculation results show that the MIRIS has a detection limit of ${\sim}9\;nW\;m^{-2}\;sr^{-1}$ (I band) and ${\sim}6\;nW\;m^{-2}\;sr^{-1}$ (H band), which is appropriate to observe the large scale structure of CIRB.

Observation of early photons of Gamma-ray bursts from UFFO/Lomonosov

  • Jeong, Soomin;Park, I.H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.64.4-65
    • /
    • 2016
  • Observations of the early photons from evolution of optical afterglows or internal shock provides the crucial clues on the nature of the bursts and environments. Hundreds of GRBs afterglow observations in multi-wavelength region have been made mainly thanks to the fast (~ 60 seconds after the trigger) localisation GRB by Swift and its fast alert to the ground telescope. It helps to improve our understandings tremendously, however many enigmas still remain, such as burst mechanism, transition prompt emission to the afterglow, early optical flash, rise phase of the early optical light curve and some missing afterglows. They could be addressed by fast slewing and multi colour and IR follow-up by future telescopes. The primary aim of UFFO/Lomonosov is to follow up optical fast ever, within a couple of seconds after trigger by onboard X-ray telescope. Its optical FOV is $30{\times}30degrees$. As a key instrument, the Slewing Mirror to redirect the optical beam from GRBs rapidly to the Ritchey-Chretien telescope. The status and launch schedule of the UFFO/Lomonosov and its test performance will be reported and prospects for the next missions will be discussed.

  • PDF

KEEP-North : Kirkwood Excitation and Exile Patrol of the Northern Sky (보현산 천문대 소행성 관측 연구)

  • Kim, Myung-Jin;Choi, Young-Jun;Moon, Hong-Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.61.3-62
    • /
    • 2016
  • An asteroid family is a group of asteroidal objects in the proper orbital element space (a, e, and i), considered to have been produced by a disruption of a large parent body through a catastrophic collision. Family members usually have similar surface properties such as spectral taxonomy types, colors, and visible geometric albedo with a same dynamical age. Therefore an asteroid family could be called as a natural Solar System laboratory and is also regarded as a powerful tool to investigate space weathering and non-gravitational phenomena such as the Yarkovsky/YORP effects. We carry out time series photometric observations for a number of asteroid families to obtain their physical properties, including sizes, shapes, rotational periods, spin axes, colors, and H-G parameters based on nearly round-the-clock observations, using several 0.5-2 meter class telescopes in the Northern hemisphere, including BOAO 1.8 m, LOAO 1.0 m, SOAO 0.6 m facilities in KASI, McDonald Observatory 2.1 m instrument, NARIT 2.4 m and TUG 1.0 m telescopes. This study is expected to find, for the first time, some important clues on the collisional history in our Solar System and the mechanisms where the family members are being transported from the resonance regions in the Main-belt to the near Earth space.

  • PDF

PERFORMANCE TEST OF THE PROTO-MODEL OF SPACE INFRARED CRYOGENIC SYSTEM (우주용 적외선 냉각시스템 시험모델 성능 평가)

  • Lee, D.H.;Yang, H.S.;Nam, U.W.;Lee, S.;Jin, H.;Kim, D.L.;Pak, S.;Kim, B.H.;Park, S.J.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • We have tested the performance of the Proto-model of Space Infrared Cryogenic System (PSICS), which is a small infrared camera, developed by Korea Astronomy and Space science Institute (KASI), Korea Basic Science Institute (KBSI), Korea Institute of Machinery and Materials (KIMM), and i3system co., as a cooperation project. The purpose of PSICS is to ensure a technology of small infrared cryogenic system for future development of space infrared (IR) cameras. PSICS consists of cryogenic part, IR sensor and electronics part, and optical part. The performance test of each part and the integrated system has been completed successfully. PSICS will be used as a guiding camera for ground-based IR telescopes and a test system for developing a space-borne instrument.

TRIO-CINEMA의 시스템 harness

  • Jeon, Je-Heon;Lee, Hyo-Jeong;Chae, Gyu-Seong;Seon, Jong-Ho;Jin, Ho;Lee, Dong-Hun;Lin, Robert P.;Immel, Thomas
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.199.1-199.1
    • /
    • 2012
  • TRIO-CINEMA(TRiplet Ionospheric Observatory-Cubesat for Ion, Neutron, Electron & MAgnetic field)는 지구근접공간에서의 미세 자기장 변화 및 중성입자의 검출을 목적으로 경희대학교와 UC Berkeley가 공동 개발하는 초소형위성이다. 초소형위성은 내부 공간이 협소하여 효율적인 공간배치 및 위성체발사 시 진동에도 견딜 수 있도록 harness가 제작되어야 한다. CINEMA는 OBC, EPS, 배터리, 수신기, IIB(Instrument Interface Board), MAGIC(MAGnetometer Imperial College) board, HVPS(High Voltage Power Supply)로 구성된 avionics bus와 MAGIC, STEIN(Supra Thermal Electron, Ion, Neutral)의 payload, Solar panel, UHF와 S-band 안테나로 구성되어 있다. Solar panel에서 생산된 전력은 EPS를 통해 배터리에 저장되고 PC104를 통해 avionics stack의 각 board로 전력이 분배된다. IIB는 탑재체 파트와 연결되어 이를 제어하고 HVPS에서 STEIN에 공급되는 고전압은 특수 와이어를 통해 연결되며 UHF 안테나와 S-band 안테나는 RF 케이블로 수신기와 송신기가 연결되어 있다. 각각의 harness는 케이블타이와 lacing tape로 위성체와 고정되며 커넥터는 고정 지지대를 제작하여 나사로 체결하였다. CINEMA에 적용된 harness는 진동시험과 열진공시험을 통해 harness와 시스템의 안정성이 검증 되었다.

  • PDF

COMPARISON OF HELICITY SIGNS IN INTERPLANETARY CMES AND THEIR SOLAR SOURCE REGIONS

  • Cho, Kyungsuk;Park, Sunghong;Marubashi, Katsuhide;Gopalswamy, Nat;Akiyama, Sachiko;Yashiro, Seiji;Kim, Roksoon;Lim, Eunkyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.137.1-137.1
    • /
    • 2012
  • If all Coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. We select 34 CME-ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk centre. The helicity signs in the ARs are determined by estimation of accumulating amounts of helicity injections through the photospheric surfaces in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88%) are helicity sign-consistent events, while 4 events (12%) are sign-inconsistent. Through a detailed investigation of the AR solar origins of the 4 exceptional events, we find that those exceptional events can be explained by the local AR helicity sign opposite to that of the entire AR helicity (2000 July 28 ICME), incorrectly reported solar source in CDAW (2005 May 20 ICME), or the helicity sign of the pre-existing coronal magnetic field (2000 October 13 and 2003 November 20 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions where CMEs were erupted.

  • PDF

H1R4: Mock 21cm intensity mapping maps for cross-correlations with optical surveys

  • Asorey, Jacobo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.56.3-56.3
    • /
    • 2019
  • We are currently living in the era of the wide field cosmological surveys, either spectroscopic such as Dark Energy Spectrograph Instrument or photometric such as the Dark Energy Survey or the Large Synoptic Survey Telescope. By analyzing the distribution of matter clustering, we can use the growth of structure, in combination with measurements of the expansion of the Universe, to understand dark energy or to test different models of gravity. But we also live in the era of multi-tracer or multi-messenger astrophysics. In particular, during the next decades radio surveys will map the matter distribution at higher redshifts. Like in optical surveys, there are radio imaging surveys such as continuum radio surveys such as the ongoing EMU or spectroscopic by measuring the hydrogen 21cm line. However, we can also use intensity mapping as a low resolution spectroscopic technique in which we use the intensity given by the emission from neutral hydrogen from patches of the sky, at different redshifts. By cross-correlating this maps with galaxy catalogues we can improve our constraints on cosmological parameters and to understand better how neutral hydrogen populates different types of galaxies and haloes. Creating realistic mock intensity mapping catalogues is necessary to optimize the future analysis of data. I will present the mock neutral hydrogen catalogues that we are developing, using the Horizon run 4 simulations, to cross-correlate with mock galaxy catalogues from low redshift surveys and I will show the preliminary results from the first mock catalogues.

  • PDF