• Title/Summary/Keyword: astronomical events

Search Result 244, Processing Time 0.028 seconds

Empirical Forecast of Solar Proton Events based on Flare and CME Parameters

  • Park, Jin-Hye;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.97.1-97.1
    • /
    • 2011
  • In this study we have examined the probability of solar proton events (SPEs) and their peak fluxes depending on flare (flux, longitude and impulsive time) and CME parameters (linear speed, longitude, and angular width). For this we used the NOAA SPE list and their associated flare data from 1976 to 2006 and CME data from 1997 to 2006. We find that about 3.5% (1.9% for M-class and 21.3% for X-class) of the flares are associated with SPEs. It is also found that this fraction strongly depends on longitude; for example, the fraction for $30W^{\circ}$ < L < $90W^{\circ}$ is about three times larger than that for $30^{\circ}E$ < L < $90^{\circ}E$. The SPE probability with long duration (${\geq}$ 0.3 hours) is about 2 (X-class flare) to 7 (M-class flare) times larger than that for flares with short duration (< 0.3 hours). In case of halo CMEs with V ${\geq}$ 1500km/s, 36.1% are associated with SPEs but in case of partial halo CME ($120^{\circ}$ ${\leq}$ AW < $360^{\circ}$) with 400 km/s ${\leq}$ V < 1000 km/s, only 0.9% are associated with SPEs. The relationships between X-ray flare peak flux and SPE peak flux are strongly dependent on longitude and impulsive time. The relationships between CME speed and SPE peak flux depend on longitude as well as direction parameter. From this study, we suggest a new SPE forecast method with three-steps: (1) SPE occurrence probability prediction according to the probability tables depending on flare and CME parameters, (2) SPE flux prediction from the relationship between SPE flux and flare (or CME) parameters, and (3) SPE peak time.

  • PDF

Forecast of geomagnetic storm using coronal mass ejection and solar wind condition near Earth

  • Kim, Rok-Soon;Park, Young-Deuk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2013
  • To improve the forecast capability of geomagnetic storms, we consider the real time solar and near Earth conditions together, since the characteristics of CMEs can be modified during their transit from the Sun to the Earth, and the geomagnetic storms may be directly affected by not only solar events but also near Earth interplanetary conditions. Using 55 CME-Dst pairs associated with M- and X-class solar flares, which have clearly identifiable source regions during 1997 to 2003, we confirm that the peak values of negative magnetic field Bz and duskward electric field Ey prior to Dst minimum are strongly related with Dst index. We suggest the solar wind criteria (Bz<-5 nT or Ey>3 mV/m for t>2 hr) for moderate storm less than -50 nT by modifying the criteria for intense storms less than -100 nT proposed by Gonzalez and Tsurutani (GT, 1987). As the results, 90% (28/31) of the storms are correctly forecasted by our criteria. For 15 exceptional events that are incorrectly forecasted by only CME parameters, 12 cases (80%) can be properly forecasted by solar wind criteria. When we applying CME and solar wind conditions together, all geomagnetic storms (Dst<-50 nT) are correctly forecasted. Our results show that, the storm forecast capability of the 2~3 days advanced warning based on CME parameters can be improved by combining with the urgent warning based on the near Earth solar wind condition.

  • PDF

Observational test of CME cone types using SOHO/LASCO and STEREO/SECCHI during 2010.12-2011.06

  • Na, Hyeonock;Jang, Soojeong;Lee, Jae-Ok;Lee, Harim;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2014
  • We have made a comparison of three cone models (an asymmetric cone model, an ice-cream cone model, and an elliptical cone model) in terms of space weather application. We found that CME angular widths obtained by three cone models are quite different one another even though their radial velocities are comparable with one another. In this study, we investigate which cone model is proper for halo CME morphology and whether cone model parameters are similar to observations. For this, we look for CMEs which are identified as halo CMEs by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 June when two spacecraft were separated by $90{\pm}10$ degrees. From geometrical parameters of these CMEs such as their front curvature, we classify them into two groups: shallow cone (5 events) and near full-cone (28 events). Noting that the previous cone models are based on flat cone or shallow cone shapes, our results imply that a cone model based on full cone shape should be developed. For further analysis, we are estimating the angular widths of these CMEs near the limb to compare them with those from the cone models. This result shows that the angular widths of the ice-cream cone model are well correlated (CC = 0.81) with those of observations.

  • PDF

Observation of long-term disappearance and reappearance of the outer radiation belt

  • Lee, Dae-Young;Shin, Dae-Kyu;Kim, Kyung-Chan;Kim, Jin-Hee;Cho, Jung-Hee;Park, Mi Young;Angelopoulos, Vassilis;Hwang, Junga;Lee, Yonghee;Kim, Thomas
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.115.2-115.2
    • /
    • 2012
  • In this study we have used the data of various instruments onboard the THEMIS spacecraft to study the characteristics of the outer radiation belt during the ascending phase of solar cycle 24. The most astonishing result is that we discovered four long-term (a month or so) periods during which the belt has nearly disappeared. The first disappearance started late 2008, followed by reappearance in ~a month, and three more similar events repeated until early 2010 when the belt has reappeared. This is well revealed at 719 keV electrons, which is the currently available uppermost energy channel from the THEMIS SST observation, but also seen at even lower energies. Overall consistent features were confirmed using the NOAA-POES observations. The vanished belt periods are associated with extremely weak solar wind conditions, low geomagnetic disturbances (in terms of Kp and AE/AL), greatly suppressed wave (ULF and chorus) activities, greatly reduced storm and substorm activities (little source particle supply), and expanded plasmapause locations. The direct observations of such events shed light on the fundamental question of the origin of the radiation belt, which is the main focus of our presentation.

  • PDF

Propagation characteristics of CMEs associated magnetic clouds and ejecta

  • Kim, Roksoon;Gopalswamy, Nat;Cho, Kyungsuk;Moon, Yongjae;Yashiro, Seiji;Park, Youngdeuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.132.2-132.2
    • /
    • 2012
  • We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counter parts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found several properties of the CMEs as follows: (1) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly to the Earth than the EJ-associated CMEs; (2) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; (3) the mean speed of MC-associated CMEs (946 km/s) is faster than that of EJ-associated CMEs (771 km/s). For seven very fast CMEs (>1500 km/s), all CMEs with large D (>0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially decides the observed ICME structure.

  • PDF

Comparison of the PSD radial profiles between before and after geosynchronous flux dropout: case studies using THEMIS observations

  • Hwang, Junga;Lee, Dae-Young;Kim, Kyung-Chan;Choi, Eunjin;Shin, Dae-Kyu;Kim, Jin-Hee;Cho, Jung-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.122-122
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report some case studies showing energy dependence during magnetopause shadowing effect.

  • PDF

Optical follow-up observation of three binary black hole merger events with the KMTNet.

  • Kim, Joonho;Im, Myungshin;Paek, Gregory S.H.;Lee, Chung-Uk;Kim, Seung-Lee;Choi, Changsu;Lim, Gu;Lee, Hyung Mok;Kim, Sophia;Hwang, Sungyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.76.1-76.1
    • /
    • 2019
  • After the first identification of electromagnetic counterpart of gravitational wave source (GW170817), era of multi-messenger astronomy has begun. For specifying coordinate, magnitude, and host galaxy information, optical follow-up observation of GW source becomes important. The O3 run of LIGO / VIRGO started after April 2019. We present searching strategy of GW optical counterpart using the KMTNet. By performing tiling observation of high probability area in GW localization map, we expect to observe early light-curve of GW optical counterpart. We will also present observation result for three gravitational wave events of binary black hole mergers. After identification of optical counterpart, we will study collision mechanism, progenitor, and characteristics of host galaxy using observation data of GW source.

  • PDF

Maximizing the Probability of Detecting Interstellar Objects by using Space Weather Data (우주기상 데이터를 활용한 성간물체 관측 가능성의 제고)

  • Kwon, Ryun Young;Kim, Minsun;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2021
  • Interstellar objects originate from other stellar systems. Thus, they contain information about the stellar systems that cannot be directly explored; the information includes the formation and evolution of the stellar systems and the possibility of life. The examples observed so far are 1l/Oumuamua in 2017 and 2l/Borisov in 2019. In this talk, we present the possibility of detecting interstellar objects using the Heliospheric Imagers designed for space weather research and forecasting by observing solar wind in interplanetary space between the Sun and Earth. Because interstellar objects are unpredictable events, the detection requires observations with wide coverage in spatial and long duration in temporal. The near-real time data availability is essential for follow-up observations to study their detailed properties and future rendezvous missions. Heliospheric Imagers provide day-side observations, inaccessible by traditional astronomical observations. This will dramatically increase the temporal and spatial coverage of observations and also the probability of detecting interstellar objects visiting our solar system, together with traditional astronomical observations. We demonstrate that this is the case. We have used data taken from Solar TErrestrial RElation Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) HI-1. HI-1 is off-pointed from the Sun direction by 14 degrees with 20 degrees of the field of view. Using images observed from 2007 to 2019, we have found a total of 223 small objects other than stars, galaxies, or planets, indicative of the potential capability to detect interstellar objects. The same method can be applied to the currently operating missions such as the Parker Solar Probe and Solar Orbiter and also future L5 and L4 missions. Since the data can be analyzed in near-real time due to the space weather purposes, more detailed properties can be analyzed by follow-up observations in ground and space, and also future rendezvous missions. We discuss future possible rendezvous missions at the end of this talk.

  • PDF

Determination of coronal electron density distributions by DH type II radio bursts and CME observations

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Lee, Kyoung-Sun;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2015
  • In this study, we determine coronal electron density distributions by analyzing DH type II radio observations based on the assumption: a DH type II radio burst is generated by the shock formed at a CME leading edge. For this, we consider 11 Wind/WAVES DH type II radio bursts (from 2000 to 2003 and from 2010 to 2012) associated with SOHO/LASCO limb CMEs using the following criteria: (1) the fundamental and second harmonic emission lanes are well identified; (2) its associated CME is clearly identified in the LASCO-C2 or C3 field of view at the time of type II observation. For these events, we determine the lowest frequencies of their fundamental emission lanes and the heights of their leading edges. Coronal electron density distributions are obtained by minimizing the root mean square error between the observed heights of CME leading edges and the heights of DH type II radio bursts from assumed electron density distributions. We find that the estimated coronal electron density distribution ranges from 2.5 to 10.2-fold Saito's coronal electron density models.

  • PDF

Intensive Monitoring Survey of Nearby Galaxies

  • Choi, Changsu;Im, Myungshin;Sung, Hyun-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.79.1-79.1
    • /
    • 2015
  • We describe our ongoing project, Intensive Monitoring Survey of Nearby Galaxies. This survey is designed to study transients such as Supernovae (SNe) in nearby galaxies. Our targets are UV-bright (MUV < -18.4) and nearby (d < 50 Mpc) 50 galaxies selected from a GALEX catalog, whose star formation rates are larger than normal galaxies. High star formation in these galaxies ensures that core-collapse supernova explosions occur more frequently in them than normal galaxies. By monitoring them with a short cadence of a few hours, we expect to discover 5 SNe/yr events. Most importantly, we hope to construct very early light curves in rising phase for some of them, which enables us to understand better the physical properties of progenitor star and the explosion mechanism. To enable such a high cadence observation, we constructed a world wide telescope network covering northern, southern hemisphere distributed over a wide range of longitudes (Korea, US, Australia, Uzbekistan and Spain). Data reduction pipe line, detection and classification algorithms are being developed for an efficient processing of the data. Using the network of telescopes, we expect to reach observe not only SNe but also other transients like GRBs, Asteroid, variable AGNs and gravitaional wave optical counter part.

  • PDF