• 제목/요약/키워드: astronomical events

검색결과 244건 처리시간 0.026초

Flares and Starspots : Direct Evidences for Stellar Activities bin Low-mass Stars

  • 장서원;변용익
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.49.1-49.1
    • /
    • 2010
  • The optical lightcurves of flare events can be regarded as a direct indicator about the existence of magnetic activity in low-mass stars. Stellar flares are generated by magnetodynamic processes in the stellar interiors as on the Sun and indicate that the locally intensified active regions still exist on the photosphere. However previous photometric observations are limited to a few selected active objects because of their faintness and randomness of the flare occurrence. Based on dedicated deep (r~23), long-term (24 night) time-series monitoring of the open cluster M37 from MMT 6.5m transit survey program, we searched for flare-like transient phenomena in the 3,052 M-dwarf lightcurves with relatively high-temporal resolution (30s-90s). In order to collect all statistical significant events, we applied the change-point analysis with filtering algorithm using local statistics. We found a number of flares from 412 M-dwarf stars that are probable cluster members. Nearly half of them have periodic brightness variations with a near or distorted sinusoidal shape. With a small exception of binary cases, most of these variations appear to reflect the presence of large starspots resulting in rotational brightness modulations. We will discuss the relationship among magnetic activity indicators and dependence on spectral type.

  • PDF

Effect of the density profile of a star on the bolometric light curve in tidal disruption events

  • Park, Gwanwoo;Kimitake, Hayasaki
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.56.1-56.1
    • /
    • 2018
  • Tidal disruption events (TDEs) provide evidence for quiescent supermassive black holes (SMBHs) in the centers of inactive galaxies. TDEs occur when a star on a parabolic orbit approaches close enough to a SMBH to be disrupted by the tidal force of the SMBH. The subsequent super-Eddington accretion of stellar debris falling back to the SMBH produces a characteristic flare lasting several months. The theoretically expected bolometric light curve decays with time as proportional to $t^{-5/3}$. However, the light curves observed in most of the optical-UV TDEs deviate from the $t^{-5/3}$ decay rate especially at early time, while the light curves of some soft-X-ray TDEs are overall in good agreement with the $t^{-5/3}$ law. Therefore, it is required to construct the theoretical model for explaining these light curve variations consistently. In this paper, we revisit the mass fallback rates analytically and semi-analytically by taking account of the structure of the star, which is simply modeled by the polytrope. We find the relation between a polytropic index and the power law index of the mass fallback rate. We also discuss whether and how the decay curves, which we derived, fit the observed ones.

  • PDF

Development of Empirical Space Weather Models based on Solar Information

  • Moon, Yong-Jae;Kim, Rok-Soon;Park, Jin-Hye;Jin, Kang
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • We are developing empirical space weather (geomagnetic storms, solar proton events, and solar flares) forecast models based on solar information. These models have been set up with the concept of probabilistic forecast using historical events. Major findings can be summarized as follows. First, we present a concept of storm probability map depending on CME parameters (speed and location). Second, we suggested a new geoeffective CME parameter, earthward direction parameter, directly observable from coronagraph observations, and demonstrated its importance in terms of the forecast of geomagnetic storms. Third, the importance of solar magnetic field orientation for storm occurrence was examined. Fourth, the relationship among coronal hole-CIR-storm relationship has been investigated, Fifth, the CIR forecast based on coronal hole information is possible but the storm forecast is challenging. Sixth, a new solar proton event (flux, strength, and rise time) forecast method depending on flare parameters (flare strength, duration, and longitude) as well as CME parameter (speed, angular width, and longitude) has been suggested. Seventh, we are examining the rates and probability of solar flares depending on sunspot McIntosh classification and its area change (as a proxy of flux change). Our results show that flux emergence greatly enhances the flare probability, about two times for flare productive sunspot regions.

  • PDF

Low ionization state plasma in CMEs

  • 이진이
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.115.1-115.1
    • /
    • 2012
  • The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) observes low ionization state coronal mass ejection plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI ($3{\times}10^5K$), C III ($8{\times}10^4K$), $Ly{\alpha}$, and $Ly{\beta}$. Earlier in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in interplanetary coronal mass ejections (ICME) events, which implies that most CME plasma is strongly heated during its expansion in solar corona. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME volume to be consistent with the small fraction of ICMEs measured by ACE that show low ionization plasma, or whether the CME must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show small covering factors. This result shows that the high ionization state ICME plasmas observed by the ACE results from a small filling factor of cool plasma. We also find that the low ionization state plasma volumes in faster CMEs are smaller than in slower CMEs. Most slow CMEs in this analysis are associated with a prominence eruption, while the faster CMEs are associated with X-class flares.

  • PDF

Asymmetric Cosmic Ray Modulation of Forbush Decreases Associated with the Propagation Direction of Interplanetary Coronal Mass Ejection

  • Jongil Jung;Suyeon Oh;Yu Yi;Jongdae Sohn
    • 천문학회지
    • /
    • 제56권1호
    • /
    • pp.117-124
    • /
    • 2023
  • A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.

Multiple Outbursts of a Short-Periodic Comet 15P/Finlay

  • Ishiguro, Masateru;Kuroda, Daisuke;Kim, Yoonyoung;Kwon, Yuna;Hanayama, Hidekazu;Miyaji, Takeshi;Honda, Satoshi;Takahashi, Jun;Watanabe, Jun-Ichi
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • 15P/Finlay is one of the Jupiter-Family Comets that has long been known since the late 19 century. The comet maintains the perihelion around 1.0 AU over a century, without showing any prominent activities (i.e. fragmentation or eruption) since the discovery. According to reports in unpublished observations, the comet exhibited an outburst in the middle of 2014 December. We conducted a imaging observation of 15P/Finlay just after the report, from 2014 December 23 to 2015 February 18 using three telescopes (the Okayama Astrophysical Observatory 50-cm telescope, the Ishigakijima Astronomical Observatory 105-cm telescope, and the Nishi-Harima Astronomical Observatory 2-m telescope), which constitute a portion of the OISTER (an inter-university observation network in the optical and infrared wavelengths). As a result of the frequent observations, we witnesses the second outburst around UT 2015 January 16. Such cometary outbursts draw the attention to researchers on ground that they could offer insight into the internal structure of comets, following a historical outburst occurred at 17P/Holmes on 2007 October 23. Although cometary outbursts have been often reported mostly in unpublished observations or unreviewed reports, it should be emphasized that there are not a sufficient number of astrophysical research which characterizes the physical properties by observing the aftermaths. This presentation provides a new observational result of 15P/Finlay outburst. Based on the morphological development of the dust cloud as well as the near-nuclear magnitude, we will derive the kinetic energy of the outburst. Finally we plan to compare the results of 15P/Finlay with those of analogical events at 17P/Holmes and P/2010 V1 (Ikeya-Murakami).

  • PDF

ANALYZING ISUAL SPECTROPHOTOMETER DATA USING A TWO-COLOR DIAGRAM METHOD

  • CHEN ALFRED BING-CHIH;CHIANG PO-SHIH;HUANG TIAN-HSIANG;KUO CHENG-LING;WANG SHI-CHUN;SU HAN-TZONG;HSU RUE-RoN;CHANG MING-HUI;CHANG YEOU-SHIN;LIU TIE-YUE;MENDE STEPHEN B.;FREY HARALD U.;FUKUNISHI HIROSHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.303-306
    • /
    • 2005
  • Transient luminous events (TLEs; sprites, elves, jets and etc.) are lightning-related optical flashes occurring above thunderstorms. Since the first discovery of sprites in 1989, scientists have learned a great deal about the morphological, spectroscopic and electromagnetic characteristics of TLEs through ground and spacecraft campaigns. However, most of the TLE studies were based on events recorded over US High Plains. To elucidate the possible biasing effects, space-borne observations are needed and have their merits. Imager of sprites and Upper Atmospheric Lightning (ISUAL) on the FORMOSAT-2 satellite is the first instrument to carry out a true global measurement of TLEs from a low- earth orbit. In this short paper, we apply a common astronomical data analysis technique, two-color diagram, on the ISUAL spectrophotometer (SP) data. By choosing appropriated bandpasses and converting the measured flux of TLEs into the unit of magnitude, two-color diagrams of TLEs can be constructed. We demonstrate that two-color diagrams, which were constructed from the narrow-band spectrophotometer data, can be used to classify different types of TLEs and trace their temporal evolution. The amount of reddening due to Earth's atmosphere can also be estimated from two-color diagrams assembled from the broad-band spectrophotometer data.

조선 현종 5년 1665년 대혜성의 궤도 요소 결정 (DETERMINATION OF PRELIMINARY ORBITAL ELEMENTS OF THE GREAT COMET C/1665 IN KOREAN HISTORY)

  • 안상현;최윤희;김성수
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권1호
    • /
    • pp.55-70
    • /
    • 2006
  • 한국의 역사서에 속에는 혜성을 관측한 기록이 많이 있다. 우리는 그 가운데 조선 현종 5년 1664년 겨울에 나타난 혜성을 관측한 기록을 <성변측후단자>, <천변등록>, <승정원일기>, <조선왕조실록>에서 수집 정리하였다. 우리는 올버스(Olbers)의 방법을 사용하여 혜성의 예비 궤도 요소를 구하고, 그것을 이전의 연구들과 비교하였다 올버스의 방법에서는 혜성 궤도의 이심율 e=1인 포물선 케도로 가정한다 관측 자료를 사용하여 궤도를 계산한 결과, 근일점 거리 (perifocal distance) $q=1.07\pm0.008AU$, 근일점 통과 시간 $T=2329165.50\pm0.72$일, 승교점과 근일점의 이각(argument of the perifocus) $\omega=318^{\circ}.2\pm2^{\circ}.29$, 승교점 경도(longitude of the ascending node) $\Omega=85^{\circ}.23\pm2^{\circ}53(J1665)$, 궤도 경사(inclination) $i=160^{\circ}.28\pm1^{|circ}.56$를 얻었다.

POLARIZATION OF LYMAN α EMERGENT FROM A THICK SLAB OF NEUTRAL HYDROGEN

  • AHN, SANG-HTEON;LEE, HEE-WON
    • 천문학회지
    • /
    • 제48권3호
    • /
    • pp.195-202
    • /
    • 2015
  • Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

Statistical Analysis on the trapping boundary of outer radiation belt during geosynchronous electron flux dropout : THEMIS observation

  • 황정아;이대영;김경찬;최은진;신대규;김진희;조정희
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report the results of our investigations on the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropout events and discuss implications on the effects of the drift loss on the flux levels at inner L regions.

  • PDF