• 제목/요약/키워드: aster yellows

검색결과 14건 처리시간 0.034초

Association of Aster Yellow Phytoplasma with Witches′ Broom Disease of Ash(Fraxinus rhynchophylla Hence) in Korea

  • Sangsub Han;Lim, Tae-Heon;Byeongjin Cha
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.73.2-73
    • /
    • 2003
  • Typical whiches broom symptoms caused by phytoplasma were observed in Ash (Fraxinus rhynchophylla Hence) in Korea. The symptoms were showing abnormally small leaves, short internodes, and proliferation of shoots. Fluorescence and electron microscopy of leaf midribs revealed phytoplasma positive DAPI fluorescence and numerous phytoplasma bodies localized in the phloem sieve tubes. Phytoplasma DNA of 1.8 Kb was detected consistently from all symptomatic samples by the amplification of phytoplasma DNA with the phytoplasma specific primer pair Pl/P7. But no phytoplasma DNA was detected in healthy ash seedlings. Based on sequence analyses of an amplified region, this phytoplasma is closely related to Eqilodium phyllody, Mulberry dwarf, and Aster yellows phytoplasmas with the homology of 99.95 %, 99.79 % and 99.78 %, respectively, This phylogenetic analyses indicate that ash witches broom phytoplasma but is evidently distinct from the ash yellows group 16SrⅦ and should be classified into the Aster yellows group 16SrⅥ.

  • PDF

Two Groups of Phytoplasma from Chrysanthemum (Dendranthema grandiflorum) Distinguished by Symptoms and 16S rRNA Gene Sequence in Korea

  • Chung, Bong-Nam;Kim, Byung-Dong
    • The Plant Pathology Journal
    • /
    • 제21권2호
    • /
    • pp.132-136
    • /
    • 2005
  • Two groups of phytoplasma were identified in chrysanthemum(Dendranthema grandiflorum) cv. Chunkwang showing distinct symptoms. Isolate Ph-ch1 showed symptoms of dwarf, witches'-broom, rosette and root death. The other isolate, Ph-ch2, revealed symptoms of dwarf, yellowing, leaf cupping, vein clearing and root death. The presence of phytoplasma structures in chrysanthemum leaf tissue was confirmed by transmission electron microscopy. The 16S rRNA gene was amplified from isolates Ph-ch1 and Ph-ch2 by PCR and cloned, and the nucleotide sequences were determined. In RFLP analysis, isolate Ph-ch2 showed profiles identical to Ph-ch1, except with restriction enzymes HhaI and MseI. The sequence data showed that isolate Ph-ch1 was most closely related to the aster yellows (AY) phytoplasma, and isolate Ph-ch2 was more closely related to stolbur phytoplasma than to AY phytoplasma. This is the first reported observation of stolbur phytoplasma in chrysanthemum species.

Elimination of Aster Yellows Phytoplasma from Dendranthema grandiflorum by Application of Oxytetracycline as a Foliar Spray

  • Chung, Bong-Nam;Park, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • 제18권2호
    • /
    • pp.93-97
    • /
    • 2002
  • Aster yellows phytoplasma-infected chrysanthemums showing stunt, rosette, and excessive branching were treated with a foliar spray of 400 mg/I oxytetracycline at three-day interval for 1,2,3 and 4 months. Two months after the final treatment, new shoots from the recovered chrysanthemums showed the recurrence of the disease symptoms. However, cuttings from chrysanthemums treated with oxytetracycline did not express any photoplasma infection symptoms for more than 10 months. Also, chrysanthemums dipped in 100 mg/I oxytetracycline solution combined with a foliar spray of 400 mg/I oxytetracycline for 4 weeks showed the same results. Using an electron microscope, ultrathin sections of leaf midribs of chrysanthemum cuttings treated with oxytetracycline for 4 months did not show phytoplasma bodies 10 months after treatment. Nucleic acids from chrysanthemums, which did not express phytoplasma infection symptoms for more than 10 months, did not amplify 16S rRNA gene of phytoplasma by polymerase chain reaction. These results may have implications in the propagation of phytoplasma-free healthy stocks for a wide range of plant species.

Phylogenetic rind Taxonomic Status of the Phytoplasmas Associated with Water Dropwort (Oenanthe javanica DC) Disease in Korea and Japan

  • Jung, Hee-Young;Woo, Tae-Ha;Hibi, Tadaaki;Namba, Shigetou;Lee, Joon-Tak
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.109-114
    • /
    • 2002
  • To evaluate the phylogenetic and taxonomic status of the phytoplasmas associated with water dropwort (Oenanthe javanica DC) disease in Korea and Japan, their 16S rDNA was analyzed. DNAs extracted from water dropworts collected in Korea (Kyongnam province) and Japan (Chiba prefecture) affected by witches' broom and yellows were subjected to PCR using phytoplasma-specific primers, which amplified a 1.4-kbp fragment that included the 16S rDNA. Phytoplasmas were characterized by RFLP analysis using AluI, HaeIII, HhaI, KpnI, MseI, and RsaI restriction enzymes and by sequence analysis of the PCR products. The mater dropwort witches'broom (WDWB) and water dropwort yellows (WDY) 16S rDNA sequences were identical and closely related to onion yellows (OY, 99.9% identity), which belong to the aster yellows (AY) 16S-subgroup. However, the KpnI RFLP analyses clearly distinguished the WDY and WDWB phytoplasmas from the OY phytoplasma. The phylogenetic analysis based on 16S rDNA showed that WDWE and WDY phytoplasmas are members of a relatively homogeneous group that evolved from a common ancestor.

대추나무 미친병에 관한 연구 (I) -병식물의 내외형태학적 특징 및 그 명명에 대해서-

  • 홍순우
    • Journal of Plant Biology
    • /
    • 제3권1호
    • /
    • pp.32-38
    • /
    • 1960
  • Since the peculiar virus disease of chinese date tree (Zizyphus jujuba Mill. var. inermis Rehd.) has been noted in South Korea around 1950, 70% to 80% of the economically important trees have been either completely destroyed or infected with the virus, severe damage has been noted, particularly, across the area ranged from middle east to the middle part of Korea, including Seoul area. Yoon-Koock-Byung in 1958 first reported the disease and descirbed it might be caused by a kinds of yellows. But he did not conform in his paper that the disease is pecisely caused by yellows virus. The authors, hereby intend to identify the true cause of the desease of the chinese data tree by studying the external symptoms of the disease and the internal morphological characteristics of the diseaset plant which shows various abnormalities in contrast to the healthy checks. In view of fact that leaves of the infected plants become yellowish in color similar to the peach yellows, aster yellows, it is likely to be identifiable as the common yellows. Furthermore, the abnormal characteristics observed by the authors are as follow: The floral organs such as petals, sepals, stamens, and pistil turn into vegetative leaves, the leaves on heavily infected plant appear as small sized one and also showing as a common witch's broom like symptom. There are also an occuring of numerous advantitious shoots developed from both of stems and roots. The amount of photosynthetic starch grains increases in parenchymatous cells, necrosis takes place in mesophyll, Particularly, Palisade Parenchyma in the leaves of infected plants are distinguished in contrast to the healthy checks. From the symptoms and the present experimetns described above, the authors are believed that the disease of chinese data tree is not caused by the yellows. It appears the disease is rather similar to the symptoms of sandal spike virus which was noted in India early in this centry. But the host plant of standal disease, Santalum albun L. and the insect vector, Jassus indicus Wal., have never been reported in Korean flora and the founa. The termperature and the otehr environmental factors is quite different Korea and India. Thus the authors believe that the peculiar disease must be an endemic new virus origin in Korea and must be called as "shoot cluster disease of chinese date tree."

  • PDF

Identification of Aster Yellows Phytoplasma in Dendranthema grandiflorum

  • Chung, Bong-Nam;Park, Gug-Seoun;Kim, Hyun-Ran;Park, Yong-Mun
    • The Plant Pathology Journal
    • /
    • 제17권1호
    • /
    • pp.57-61
    • /
    • 2001
  • Phytoplasmas were identified from two chrysanthemum (Dendranthema grandiflorum) plants showing different symptoms ; one with stusting, rosette, and excessive branching (Ph-ch1), and the other with stunting and chlorosis (Ph-ch2). Electron microscopy of midrib of the plants with the symptoms revealed that numerous phytoplasmas were localized in the phloem cells. The disease was transmitted from infected plants to healthy ones by grafting. Phytoplasma-specific DNA was detected in polymerase chain reaction (PCR) analysis with template DNA extracted from the leaves of Ph-ch1 and Ph-ch2, both of which yielded a same DNA band corresponding to 1.5 kb. Using a specific primer pair (R16F1/R1) synthesized based on aster yellows (AY) phytoplasma, a DNA fragment of 1.1 kb was amplified by PCR. Endonuclease restriction patterns of the 1.1 kb PCR products from Ph-ch1 and Ph-ch2, which were dgeste with each of the restriction endonucleases Sau3A, Hha, Alu and Rsa, were same as those of AY phytoplasma from periwinkle. This suggests that the chrysanthemum plants (Ph-ch1 and Ph-ch2) be infected with a phytoplasma belonging to AY phytoplasma.

  • PDF

Detection and Molecular Characterization of a Stolbur Phytoplasma in Lilium Oriental Hybrids

  • Chung, Bong-Nam;Jeong, Myeong-Il
    • The Plant Pathology Journal
    • /
    • 제19권2호
    • /
    • pp.106-110
    • /
    • 2003
  • Stolbur Phytoplasma was detected from Lilium Oriental hybrids showing flattened stem and flower clustering. The presence of phytoplasma was demonstrated using polymerase chain reaction(PCR) assays with phyto-plasma-universal(P1/P6)and stolbur phytoplasma-specific 16F1/R1-S primer pairs amplifying phytoplasma 16S rDNA regions. Nucleotide suquences of the phytoplasma 16S rDNA were determined. Nucleic acid extracted from lily amplified 1.5 kb DNA with a phytoplasma universal primer pair. In nested PCR, 1.1 kb PCR product was obtained using specific primer pair, indicating an isolate of stolbur phytoplasma. Nucleotide sequence of phytoplasma 16S rDNA reported in this study showed 99.5% and 99.1% identities with two known stolbur phytoplamas (16Sr XII-A). Also, it exhibited a sequence homology of 98.0% with phormium yellow leaf (16Sr XII-B), and 97.9% with Australian grapevine yellows (16Sr XII-B). Meanwhile, it showed 98.1% identity with strawberry green petal phytoplama, (16Sr1-C), and 94.7 % with American aster yellows (16Sr1-B). Homology percentage of the 16S rDNA nucleotide sequence suggests that this phytoplama could be classified into the stolbur phytoplasma, subgroup A (16Sr XII-A), as a type strain stolbur.

First Report on the Witches' Broom in Annual Statice (Limonium sinuatum) in Korea

  • Chung, Bong-Nam;Huh, Kun-Yang;Jeong, Myeong-Il
    • The Plant Pathology Journal
    • /
    • 제21권4호
    • /
    • pp.383-386
    • /
    • 2005
  • In 2003 typical phytoplasma symptoms of witches' broom and flower malformation were observed on statice (Limonium sinuatum) plants grown at commercial greenhouses in Busan, South Korea. The DNA extracted from the infected leaves was amplified using universal primer pair of Pl/P6 derived from conserved 16S rRNA gene of Mollicutes giving the expected Polymerase chain reaction (PCR) product of 1.5 kb. In the nested PCR assays, the expected DNA fragment of 1.1 kb was amplified with the specific primer pair 16Fl/Rl that was designed on the basis of aster yellows (AY) phytoplasma 16S rDNA sequences. The 1.1 kb PCR products were cloned and nucleotide sequences were determined. The sequences were identical to that of Onion yellows OY phytoplasma (GenBank accession no. D12569) isolated from Onion in Japan. Electron microscopy of thin sections of leaf veins showed phytoplasma bodies in the phloem. Statice witches' broom symptom occurred on statice in commercial greenhouses in Korea was confirmed as infection of AY phytoplasma by transmission electron microscopy observation, and by determination of 16S rRNA gene sequences of phytoplasma.

Current Status of Phytoplasmas and their Related Diseases in Korea

  • Jung, Hee-Young;Win, Nang Kyu Kyu;Kim, Young-Hwan
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.239-247
    • /
    • 2012
  • Phytoplasmas have been associated with more than 46 plant species in Korea. Several vegetables, ornamentals, fruit trees and other crop species are affected by phytoplasma diseases. Six 16Sr groups of phytoplasmas have been identified and these phytoplasmas are associated with 63 phytoplasma diseases. Aster yellows phytoplasmas are the most prevalent group and has been associated with more than 25 diseases in Korea. Jujube witches' broom, paulownia witches' broom and mulberry dwarf diseases cause economic losses to host trees throughout the country. So far, Korean phytoplasmas belong to six species of 'Candidatus Phytoplasma'; 'Ca. P. asteris', 'Ca. P. pruni$^*$', 'Ca. P. ziziphi', 'Ca. P. trifolii', 'Ca. P. solani$^*$' and 'Ca. P. castaneae'. The diseases are distributed throughout the country and most of them were observed in Gyeongbuk and Chonbuk provinces. At least four insect vectors; Cyrtopeltis tenuis, Hishimonus sellatus, Macrosteles striifrons and Ophiola flavopicta have been identified for phytoplasma transmission.

Phytoplasma specific primer for detection of jujube witches′ broom group(16SrV) in Korea and China

  • Sangsub Han;Lee, Sanghun;Mengjun Liu;Byeongjin Cha
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.136.2-137
    • /
    • 2003
  • In order to diagnose and differentiate jujube witches' broom (JWB) phytoplasma rapidly, oligonucleotide primer pair, 16Sr(V) F/R, for polymerase chain reactions (PCRs) was designed on the basis of 165 rRNA sequences of JWB phytoplasma. The PCR employing phytoplasma universal primer pair P1/P7 consistently amplified DNA in all tested phytoplasma isolates. But no phytoplasma DNA was detected in healthy jujube seedlings. The nested PCR, the primer pair 16S(V) F/R, about 460 bp fragment, amplified DNA in all tested JWB and related phytoplasmas including LiWB phytoplasma of the 165 rRNA group V, but no DNA amplification was detected from other phytoplasma strains such as group 16SrI (Aster yellows) and group 16SrⅩII (Stolbur group) phytoplasmas in which mulberry dwarf phytoplasma and chrysanthemum witches broom phytoplasma are belonged to, respectively The same results were obtained from both Korean- and Chinese-isolates of JWB. Nested-PCR using phytoplasma universal primer pair P1/P7 and 16S rRNA group V specific primer pair 16S(V) F/R could detect group V phytoplasma rapidly and easily, in particular JWB phytoplasma.

  • PDF