• Title/Summary/Keyword: assumed strain method

Search Result 255, Processing Time 0.025 seconds

Assumed strain finite strip method using the non-periodic B-spline

  • Hong, Hyun-Seok;Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.671-690
    • /
    • 2004
  • An assumed strain finite strip method(FSM) using the non-periodic B-spline for a shell is presented. In the present method, the shape function based on the non-periodic B-splines satisfies the Kronecker delta properties at the boundaries and allows to introduce interior supports in much the same way as in a conventional finite element formulation. In the formulation for a shell, the geometry of the shell is defined by non-periodic B3-splines without any tangential vectors at the ends and the penalty function method is used to incorporate the drilling degrees of freedom. In this study, new assumed strain fields using the non-periodic B-spline function are proposed to overcome the locking problems. The strip formulated in this way does not posses any spurious zero energy modes. The versatility and accuracy of the new approach are demonstrated through a series of numerical examples.

고유 변형도법에 의한 잔류응력의 계산 (Calculation of residual stresses by inherent strain method)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.36-41
    • /
    • 1989
  • Among various calculation methods for residual stresses, inherent strain method can be useful one for its simplicity. In comparison with finite element method, it is more economical and efficient. First, inherent strain is assumed, and then incompatibility can be calculated from this inherent strain. Based on collocation method, incompatibility equation is solved assuming stress functions which satisfies boundary conditions. Assumed inherent strain can be determined through iterations on the condition that longitudinal residual stress in centerline is yield stress and transverse distortion is the same as predicted one from other method. Calculated results according to this analytic method yield good agreement with experimental ones.

  • PDF

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D.;Park, T.H.
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.387-410
    • /
    • 2002
  • Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.

한국형 원전 격납건물의 비선형해석에 관한 연구 (A Study on the Nonlinear Analysis of Containment Building in Korea Standard Nuclear Power Plant)

  • 이홍표;전영선;이상진
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.353-364
    • /
    • 2007
  • 이 논문에서는 원전 격납건물의 극한내압능력 및 파괴모드 평가를 위해 개발된 비선형 유한요소해석 프로그램 NUCAS 코드에 대하여 기술하였다. NUCAS는 미시적인 재료모델을 도입한 퇴화 쉘 요소와 탄소성 재료모델을 도입한 저차고체요소로 구성되어 있고, 퇴화 쉘 요소와 저차고체요소는 유한요소에서 발생할 수 있는 강성과대(overstiffness) 및 묶임현상(locking phenomenon)을 방지하기 위해서 각각 가변형도법(assumed strain method)과 개선된 가변형도법(enhanced assumed strain method)을 적용하였다. 개발된 NUCAS코드의 성능을 검증하기 위해서 다양한 철근콘크리트 구조물의 벤치마크 테스트를 수행하였고, 그 결과로부터 이 논문에서 개발한 유한요소해석 프로그램의 해석결과는 실험결과와 잘 일치하였다.

효과적인 열응력 해석을 위한 사각형 추가 변형률 요소의 개발 (Development of a Quadrilateral Enhanced Assumed Strain Element for Efficient and Accurate Thermal Stress Analysis)

  • 고진환;이병채
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1205-1214
    • /
    • 1999
  • A new quadrilateral plane stress element is developed for efficient and accurate analysis of thermal stress problems. It is convenient to use the same mesh and the same shape functions for thermal analysis and stress analysis. But, because of the inconsistency between deformation related strain field and thermal strain field, oscillatory responses and considerable errors in stresses are resulted in. To avoid undesired oscillations, strain approximation is enhanced by supplementing several assumed strain terms based on the variational principle. Thermal deformation is incorporated into the generalized mixed variational principle for displacement, strain and stress fields, and basic equations for the modified enhanced assumed strain method are derived. For the stress approximation of bilinear elements, the $5{\beta}$ version of Pian and Sumihara is adopted. The numerical results for several problems show that the present element behaves well and reduces oscillatory responses. it also results in almost the same magnitude of error as compared with the quadratic element.

링압축실험에 의한 유동응력 및 마찰인자의 결정 (II) (Determination of Flow Stress and Friction Factor by the Ring Compression Test (II))

  • 최영민;김낙수
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF

Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model

  • Cho, Soojin;Yun, Chung-Bang;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.645-663
    • /
    • 2015
  • Recently, an indirect displacement estimation method using data fusion of acceleration and strain (i.e., acceleration-strain-based method) has been developed. Though the method showed good performance on beam-like structures, it has inherent limitation in applying to more general types of bridges that may have complex shapes, because it uses assumed analytical (sinusoidal) mode shapes to map the measured strain into displacement. This paper proposes an improved displacement estimation method that can be applied to more general types of bridges by building the mapping using the finite element model of the structure rather than using the assumed sinusoidal mode shapes. The performance of the proposed method is evaluated by numerical simulations on a deck arch bridge model and a three-span truss bridge model whose mode shapes are difficult to express as analytical functions. The displacements are estimated by acceleration-based method, strain-based method, acceleration-strain-based method, and the improved method. Then the results are compared with the exact displacement. An experimental validation is also carried out on a prestressed concrete girder bridge. The proposed method is found to provide the best estimate for dynamic displacements in the comparison, showing good agreement with the measurements as well.

인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정 (Determination of a critical damage by experiment and analysis of tensile test)

  • 장성민;엄재근;이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

개선된 자연변형률 쉘 요소를 이용한 판의 진동해석 (Dynamic Analysis of Plates using a Improved Assumed Natural Strain Shell Element)

  • 이원홍;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2284-2291
    • /
    • 2010
  • 본 논문에서는 회전관성과 전단변형이 고려된 8절점 쉘 요소를 이용한 판의 진동해석을 연구하였다. 면내 잠김과 전단 잠김 현상을 극복하기 위하여 가정자연변형률 방법을 이용하였다. 8절점 쉘 요소의 성능 향상을 위해 새로운 보간점의 조합을 이용한 가정변형률 방법을 사용하였다. Reissner-Mindlin 이론에 근거한 개선된 1차 전단변형이론을 적용하여 회전관성을 고려하였으며 전단보정계수를 사용하지 않았다. 본 연구의 결과를 검증하기 위해 참고문헌의 직사각형 판의 동적 해석결과를 제시하였다. 해석결과는 참고문헌의 결과와 잘 일치하였다. 또한 감쇄효과가 고려된 판의 진동해석을 수행하였다.