• Title/Summary/Keyword: assumed modes

Search Result 228, Processing Time 0.025 seconds

Bandwidth Ratio Considerations for Traffic Parameter Mapping on the Frame Relay/ATM Interworking (FR/ATM 연동에서 트래픽 파라메타를 사상하기 위한 대역 비율)

  • Nam, Yun-Seok;Kim, Jeong-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.175-181
    • /
    • 1999
  • There are issues regarding how some of traffic parameters should be set so that ATM and non-ATM service parameters can be compatible. For example, policing method used by frame relay based on CIR(committed information rate) will not exactly match the ATM UPC(Usage Parameter Control) method. ATM and the frame relay have different transfer modes and traffic parameters. The cells and frames are police by their own traffic control schemes. For the same information, the real traffic of the ATM side takes greater bandwidth than that of the frame relay side caused by ATM cell format and AAL5 format. IN both networks this bandwidth than that of the frame relay side caused by ATM cell format and AAL5 format. In both networks this bandwidth ratio should be considered on traffic parameter mapping to maintain their QoS and to perform efficient network resource management. In this paper we describe traffic parameter mapping schemes between frame relay and ATM in ATM network and how to expect the bandwidth ratio to maintain FR QoS in ATM network. We assumed frame length distribution to Erlang or Exponential probability density function.

  • PDF

A Study for Lifetime Predition of Expansion Joint Using HILS (HILS 기법을 적용한 신축관 이음 수명예측에 관한 연구)

  • Oh, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.138-142
    • /
    • 2018
  • This study used HILS to test an expansion joint, which is vulnerable to the water hammer effect. The operation data for the HIL simulator was the length rate of the expansion joint by the water hammer, which was used for life prediction based on the vibration durability. For the vibration durability test, the internal pressure of the expansion joint was assumed to be a factor of the durability life, and the lifetime prediction model equation was obtained by curve fitting the lifetime data at each pressure. During the test, the major failure modes of crack and water leakage occurred on the surface of the bellows part. The lifetime prediction model typically follows an inverse power law model. The pressure is a stress factor, and the model is effective in only a specific environment. Therefore, another stress factor such as temperature will be added and considered for a mixed lifetime prediction model in the future.

Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower (풍력발전 타워용 원형단면 강재 쉘의 극한휨강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.

Narrative Thought and ITS Implication on the Science Education (내러티브 사고의 과학교육적 함의)

  • Kim, Man-Hee;Kim, Beom-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.851-861
    • /
    • 2002
  • In this paper, two modes of thought are assumed, which are known as the paradigmatic and the narrative mode of thought by Bruner(1985; 1986). The former leads to well-formed argument, but the latter to good story; each providing distinctive ways of ordering experience, of constructing reality. Though the two are complementary, but not reducible to one another. However modern schooling has focused on the paradigmatic mode. It has come to its peak in science education. Recently some educators began to gaze at the narrative mode in other humanities, but not science. Narrative is commonly considered to be foreign to science. But many scientists are convinced that modern science depends on speculation much more than observation. The speculation is conducted by intrapersonal or interpersonal narrative, which was called "science-making" by Bruner(1996). The purpose of this paper is to introduce the narrative mode of thought compared to paradigmatic mode as the new concepts and to discuss its implications on the science education. Three implications will be suggested. The first holds that science class should improve student's narrative sensibility throughout the live science-making. The second holds that the narrative mode of thought should be used with the support of the paradigmatic mode in science classroom. Exactly narrative interpretations are adjuncts to scientific explanations. The third holds that the evaluation method should be developed for the narrative work in science education.

Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes (불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용)

  • Han, Jeong-Sam;Gwak, Byeong-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

Analysis on In-Plane Behavior of Unreinforced Masonry Walls (비보강 조적벽체의 면내거동 해석)

  • 김장훈;권기혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • A series of unreinforced masonry(URM) walls were analytically investigated by FEM for a limited version of seismic in-plane performance. For this, URM walls were assumed to be continum and modeled as isotropic plane stress elements, within which the nature of cracking was propogated. Accordingly, behavioral mode of cracking in URM was modeled by smeared-crack approach. Total of 70 cases were considered for various parameters such as axial load ratio, aspect ratio and effective section area ratio due to the existence of opening, etc. The analysis results indicate that these parameters significantly and interactively influence over the ultimate strength of URM walls. Finally, it is suggested that the response modification factor for URM adopted in the current Korean Standard should be validated considering various forms of brittleness and probable failure modes in URM.

Dynamic Analysis of the Multi-Span Beam on Elastic Foundation Part two : Dynamic Response for the Moving Loads (탄성지반 위에 놓여있는 다지지 보의 동적해석 제2보 : 움직이는 하중에 대한 동적응답)

  • K.J. Choi;Y.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.92-98
    • /
    • 1991
  • The structures such as railway bridges can be modelled as the multi-span beam on the elastic foundation. These structures are usually subject to the moving load, which has a great effect on dynamic stresses and can cause severe motions, especially at high velocities. In this paper, the dynamic responses of the multi-span beam on the elastic foundation were obtained by using the Galerkin's method and the numerical time integration technique. As trial functions, the same orthogonal polynomial functions obtained in part 1, were used. From the numerical results, it was found that the one term expansion of the assumed solution usually leads to the accurate solutions. However, in the case that the stiffness of the transnational spring is very high or the rotational spring is placed where the slope of the first mode is zero, the higher modes must be included to obtain the accurate solutions.

  • PDF

Effects of the Random Fluctuation in Grating Period on the Characteristics of DFB Lasers (회절격자 주기의 랜덤 변이가 DFB 레이저 특성에 미치는 영향)

  • Han, Jae-Woong;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.76-85
    • /
    • 2000
  • Effects of the random fluctuation in grating half-period have been studied by an effective index transfer matrix method in DFB lasers. The laser facets are assumed to be perfectly antireflection coated, and the period fluctuation is modeled as a Gaussian random variable. The random fluctuation breaks spectral symmetry in both uniform-grating and quarter-wavelength -shifted(QWS) DFB lasers, and decreases the effective coupling coefficient. This leads to increased average mirror loss of ${\pm}$1 modes and reduced stopband width in uniform grating DFB lasers, and degradation in the wavelength accuracy and the single mode stability in QWS-DFB lasers. Threshold gain difference decreases with increasing period fluctuation irrespective of grating coupling coefficient in QWS-DFB lasers, while spatial hole-burning effect is exacerbated or alleviated when the normalized coupling coefficient is lower and higher than 1.5, respectively.

  • PDF

Analysis of Seismic Fragility Improvement Effect of an Isolated Rotational Equipment (면진장치를 설치한 회전기기의 지진취약도 개선효과 분석)

  • Kim, Min-Kyu;Ohtori, Yasuki;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, for the evaluation of seismic safety of the isolated Emergency Diesel Generator (EDG) System more quantitatively, the seismic fragility analysis method were proposed. Using the proposed method, seismic fragility analysis performed and a seismic risk of EDG system was present. The fragility analysis performed not for an existing EDG system but also for an isolated EDG system which increases the seismic capacity. At first, numerical models for existing and isolated EDG system were constructed and seismic response analysis performed according to input seismic waves and peak ground accelerations. An uncertainty factors and failure modes of both fixed and isolated EDG system were assumed for fragility analysis. The HCLPF values were evaluated for the compare the improvement effect using the isolation system. As a result, the isolation system can make better the seismic fragility of EDG system, but the failure of isolation system was govern the behavior of whole system.

Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix (유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정)

  • Na, Chae-Kuk;Kim, Sun-Pil;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Stiffness estimation of a shear building due to local damages is usually achieved though structural analysis based on the assumed material properties and idealized numerical modeling of structure. Conventional numerical modeling, however, frequently causes an inevitable error in the structural response and this makes it difficult to exactly predict the damage state in structure. To solve this problem, this paper introduces a damage detection technique for shear building using genetic algorithm. The introduced algorithm evaluates the damage in structure using a flexibility matrix since the flexibility matrix can exactly be obtained from the field test in spite of using a few lower dynamic modes of structure. The introduced algorithm is expected to be more effectively used in damage detection of structures rather than conventional method using the stiffness matrix. Moreover, even in cases when an accurate measurement of structural stiffness cannot be expected, the proposed technique makes it possible to estimate the absolute change in stiffness of the structure on the basis of genetic algorithm. The validity of the proposed technique is demonstrated though numerical analysis using OPENSEES.