• Title/Summary/Keyword: assembling

Search Result 687, Processing Time 0.033 seconds

Recent Development of Automated Strain Measurement System for Sheet Metal Parts (판재 변형률 자동측정시스템의 발전)

  • 김형종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.129-133
    • /
    • 2000
  • It is reasonable to use the stereo vision and image processing technique to digitize 3D coordinates of grid points and to evaluate surface strains on a sheet metal parts. However this method has its intrinsic problems such as the difficulty in enhancement of bad images inevitable error due to digital image resolution of camera and frame grabber unreliability of strains and thickness evaluated from coarse grid on the corner area with large curvature and the limitation of the area that can be measured at a time. Therefore it is still hard to measure strain distribution over the entire surface of a medium,- or large-sized stamped part at a time even by using an automated strain measurement system. In this study the curvature correction algorithm based on the grid refinement and the geometry assembling algorithm based on the global error minimization (GEM) scheme are suggested. Several applications are presented to show the reliability and efficiency of these algorithms.

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.182-187
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for similar model of fifth cell among the twelve cell for automatic test and assemblig in S company.

  • PDF

A Scheme for Assembling Parts Using Visual Servoing (Visual Servoing을 이용한 움직이는 부품의 조립기법)

  • Noh, Sang-Soo;Park, Sang-Bum;Lee, Boo-Hyung;Hahn, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.837-838
    • /
    • 2006
  • This paper proposes a method of assembling parts using visual servoing in dynamic environment. We use SSD(Sum of Square Difference) based on adaptive template in order to detect a moving object in the case where the robot and the object both move. And the control input of the robot is obtained from the feed-back signal of the feature movement and the feed-forward signal of the camera movement in image plane.

  • PDF

An investigation on noise quality of the small gear reductioner through change of gear backlash (기어 백래쉬(Backlash) 변화에 의한 소형감속기의 소음특성에 관한 연구)

  • Kim, Joo-Han;Sung, Ha-Kyeong;Chung, Jung-Kee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.635-640
    • /
    • 2001
  • The small gear reductioner noise is caused by gear accuracy, assembling errors, and gear backlash. This main study is an investigation on noise quality of the small gear reductioner through the change of gear backlash. In this study included Gear design parameters related the small gear reductioner, the knowledge of rattle noise related gear backlash, and the experimentation results of the small reductioner noise through change of gear backlash. At last, this study propose the least method of the small gear reductioner noise that is caused by suitable existence of gear backlash.

  • PDF

Parametric 3D elastic solutions of beams involved in frame structures

  • Bordeu, Felipe;Ghnatios, Chady;Boulze, Daniel;Carles, Beatrice;Sireude, Damien;Leygue, Adrien;Chinesta, Francisco
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.233-248
    • /
    • 2015
  • Frame structures have been traditionally represented as an assembling of components, these last described within the beam theory framework. In the case of frames involving complex components in which classical beam theory could fail, 3D descriptions seem the only valid route for performing accurate enough analyses. In this work we propose a framework for frame structure analyses that proceeds by assembling the condensed parametric rigidity matrices associated with the elementary beams composing the beams involved in the frame structure. This approach allows a macroscopic analysis in which only the condensed degrees of freedom at the elementary beams interfaces are considered, while fine 3D parametric descriptions are retained for local analyses.

Study on the Parameters to Decrease the Torque in ITR Part (ITR의 회전토크저감을 위한 조립인자에 대한 연구)

  • Choi Seogou;Kim In Ho;Lim Seong Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.26-31
    • /
    • 2005
  • ITR(Inne. Tie Rod) is one of the core parts in an automobile steering system. The front wheels are connected to the steering system, which are controlled by steering wheel through the ITR. Improvement of assembling ITR is needed f3r drivers' satisfaction. Therefore, the parameters influencing the rotational torque were studied and analyzed. The useful results can be obtained, and could be applied to manufacture ITR. Through these manufacturing technologies, high quality ITR have been manufactured with high productivity.

Hydrogen Bonding-Driven Assembling of Thin Multiwalled Carbon Nanotubes (수소결합에 의한 얇은 다중벽 탄소나노튜브의 자기조립)

  • Han, Joong-Tark;Kim, Sun-Young;Woo, Jong-Seok;Lee, Gun-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.426-427
    • /
    • 2007
  • Here we describe the formation of a self-assembled film of thin multiwalled carbon Nanotubes(t-MWNT) modified with hydroxy groups through hydrogen peroxide treatment. Morphologies of t-MWNT films could be controlled by the various coating method, such as filtering, drop casting, spraying method, etc. The results show that on densification of the CNT suspension during drying, multiple hydroxy group-modified MWNTs can be self-assembled through strong surface hydrogen bond interaction while MWNTs usually exist an entangled state in the film. The interaction between t-MWNT was illustrated from Raman spectrum of spray coated films.

  • PDF

Robot-Human Task Sharing System for Assembly Process (조립 공정을 위한 로봇-사람 간 작업 공유 시스템)

  • Minwoo Na;Tae Hwa Hong;Junwan Yun;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.419-426
    • /
    • 2023
  • Assembly tasks are difficult to fully automate due to uncertain errors occurring in unstructured environments. When assembling parts such as electrical connectors, advances in grasping and assembling technology have made it possible for the robot to assemble the connectors without the aid of humans. However, some parts with tight assembly tolerances should be assembled by humans. Therefore, task sharing with human-robot interaction is emerging as an alternative. The goal of this concept is to achieve shared autonomy, which reduces the efforts of humans when carrying out repetitive tasks. In this study, a task-sharing robotic system for assembly process has been proposed to achieve shared autonomy. This system consists of two parts, one for robotic grasping and assembly, and the other for monitoring the process for robot-human task sharing. Experimental results show that robots and humans share tasks efficiently while performing assembly tasks successfully.