• 제목/요약/키워드: assay system

검색결과 1,679건 처리시간 0.027초

DK1002에 대한 급성독성시험 및 유전독성에 관한 연구 (Acute and Genetic Toxicity Study of DK1002, a Drug Candidate for Analgesics)

  • 류재천;김경란;김현주;정상운;김명국;박희석;김용해
    • Toxicological Research
    • /
    • 제14권3호
    • /
    • pp.427-433
    • /
    • 1998
  • The acute and genetic toxicity of DK1002 was subjected in this study. DK1002 which is a morphine-like new drug candidate synthesized by Dong-Kook Pharmaceutical Co. Ltd. is now under developing as a analgesics that have better drug efficacy and least addictive property. In acute toxicity study, the 50% lethal doses ($LD_{50}$) of DK1002 were determined as>2000mg/kg (p.o.), 237.0mg/kg(i.p.), 57.5mg/kg(i.v.), and 1266.9mg/kg (s.c.). And also, to study the genotoxicity of DK1002, we performed bacterial reversion assay with Salmonella typhimurium TA98, TA100, TA1535, and TA1537, and in vitro chromosomal aberration assay with Chinese hamster lung cells in the presence and absence of S-9 metabolic activation system. In vivo micronucleus assay using mouse bone marrow cells was also performed. From these results, DK1002 was revealed nonmutagenic potential in S. typhimurium TA98, TA100, TA1535, and TA537 both in the absence and presecne of metablic activation system. No clastogenicity of DK1002 was observed in chromosomal aberration assay in vitro as well as in micronucleus assay in vivo.

  • PDF

Mechanism study on DNA damage and Apoptosis induced by heak shock using Comet Assay

  • Seo, Young-Rok;Han, Sung-Sik;Kim, L. O′Neill;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 1997년도 제20회 화학물질의 환경독성과 건강영향
    • /
    • pp.101-101
    • /
    • 1997
  • Comet assay, single cell gel electrophoresis has been known as useful, rapid, simple, visual, and sensitive technique for measuring the DNA breakage in mammalian ce1ls. For evaluation of DNA damage using comet assay, early studies reported a change in comet length and intensity with DNA damage using simple visual technique, such as fluorescence microscopy with eyespiece. In recent, some workers are observing and analyzing nucleotide of comets using quantitative fluorescence image analysis system to estimate 'tail moment', which is defined as the product of the tail length and the fraction of total DNA in tail. Our laboratory also adopted the image analysis software for qualification. In addition, many of the practical features of comet assay render it potentially attractive as useful tool for molecular toxicology and carcinogenesis, because the system is already showing considerable promise as rapid predictor in both in vitro and in vivo experimental designs. Recently, the comet assay becomes a attractive technique to study of apoptosis, because apoptotic fragmentation of nuclear DNA into nucleosomal sizes can be evaluated by the comet assay. So, we attempted to apply the comet assay to studying the effect of various stress on the apoptosis-sensitive cell lines. Particularly, focusing on the hyperthermic apoptosis, we could find that heat shock(44˚C for 60 minutes) was sufficient to induced apoptosis in these cell lines. But using the highly sensitive comet assay, we could not detect DNA breaks immediately after heat shock.

  • PDF

환경 오염물질의 진보된 독성 평가 기법 (Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권1_2호
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

The Genotoxicity Study of Molinate, an Herbicide, in Bacterial Reversion, in vitro and in vivo Mammalian System

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.176-184
    • /
    • 2006
  • The controversy on genotoxicity of molinate, an herbicide, has been reported in bacterial system, and in vitro and in vivo mammalian systems. To clarify the genotoxicity of molinate, we performed bacterial gene mutation test, in vitro chromosome aberration and mouse lymphoma $tk^{+/-}$ gene assay, and in vivo micronucleus assay using bone marrow cells and peripheral reticulocytes of mice. In bacterial gene mutation assay, no mutagenicity of molinate ($12-185{\mu}g/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activation system. The clastogenicity of molinate was observed in the presence ($102.1-408.2\;{\mu}g/mL$) of metabolic activation system in mammalian cell system using Chinese hamster lung fibroblast. However, no clastogenicity was observed in the absence ($13.6-54.3\;{\mu}g/mL$) of metabolic activation system. It is suggested that the genotoxicity of molinate was derived some metabolites by metabolic activation. Molinate was also subjected to mouse lymphoma L5178Y $tk^{+/-}$ cells using microtiter cloning technique. In the absence of S-9 mixture, mutation frequencies (MFs) were revealed $1.4-1.9{\times}10^{-4}$ with no statistical significance. However, MFs in the presence of metabolic activation system revealed $3.2-3.4{\times}10^{-4}$ with statistical significance (p<0.05). In vivo micronucleus (MN) assay using mouse bone marrow cells, molinate revealed genotoxic potential in the dose ranges of 100-398 mg/kg of molinate when administered orally. Molinate also subjected to acridine orange MN assay with mouse peripheral reticulocytes. The frequency of micronucleated reticulocytes (MNRETs) induced 48 hr after i.p. injection at a single dose of 91, 182 and 363 mg/kg of molinate was dose-dependently increased as $10.2{\pm}4.7,\;14.6{\pm}3.9\;and\;28.6{\pm}6.3\;(mean{\pm}SD\;of\;MNRETs/2,000\;reticulocytes)$ with statistical significance (p<0.05), respectively. Consequently, genotoxic potential of molinate was observed in in vitro mammalian mutagenicity systems only in the presence of metabolic activation system and in vivo MN assay using both bone marrow cells and peripheral reticulocytes in the dose ranges used in this experiment. These results suggest that metabolic activation plays a critical role to express the genotoxicity of molinate in in vitro and in vivo mammalian system.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIII) - Single Cell Gel Electrophoresis of Benzoyl Chloride, 2-Propyn-1-ol, and 2-Phenoxyethanol in Chinese Hamster lung Fibroblast -

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권2호
    • /
    • pp.79-84
    • /
    • 2004
  • Three synthetic chemicals, benzoyl chloride, 2-propyn-l-ol, and 2-phenoxy ethanol were selected for genotoxicity testing, based on production quantity and available genotoxic data. In our previous report, benzoyl chloride induced chromosomal aberrations in Chinese hamster lung (CHL) fibroblast in vitro with and without metabolic activation, while 2-propyn-l-ol and 2-phenoxy ethanol induced only with metabolic activation. To compare the genotoxicity of chromosome aberration assay, the single cell gel electrophoresis (comet) assay subjected using CHL cells. As a result, statistically significant differences of tail moment values of benzoyl chloride, 2-propyn-1-ol, and 2-phenoxy ethanol were observed compared with control values on almost all concentrations with S9 or without S9 metabolic activation system. This results suggest that genotoxic results of the comet assay and the chromosome aberration assay show correlationship of genotoxicity in the CHL fibroblast. In summary, the positive result of chromosome aberration of benzoyl chloride, 2-propyn-l-ol, and 2-phenoxy ethanol was also induced DNA damages in comet assay with same cell line. Consequently, comet assay will be useful and more accurate tool to detect and to confirm the genotoxicity especially DNA damages in CHL fibroblast.

  • PDF

랫드 자궁비대반응시험(Uterotrophic assay)을 이용한 phthalate esters의 에스트로겐성 작용 연구 (No Estrogenic Activity of Phthalate Esters in Ovariectomized Rat Uterotrophic Assay)

  • 한순영;문현주;김형식;김철규;신재호;오세동;장성재;박귀례
    • Biomolecules & Therapeutics
    • /
    • 제8권2호
    • /
    • pp.147-152
    • /
    • 2000
  • The rodent uterotrophic assay is currently recommended as one of the primary in vivo assays far endocrine disrupting chemicals by the Organization for Economic Cooperation and Development (OECD) and Endocrine Disruptor Screening and Testing Advisory Committee (US EPA EDSTAC). Generally, this assay relies on the rapid increase in uterus and vagina weights when exposed to estrogenic compounds. Phthalate esters have been used extensively as a plasticizer in the manufacture of plastic products such as PVC films and medical devices. Recently, phthalate esters have been shown to induce endocrine system mediated responses. However, a flew studies have been conducted for the screening of their estrogenic activity. In this study the estrogenic activity of seven phthalate esters, butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), di-n-butylphthalate (DBP), diethylphthalate (DEP), di-n-pentylphthalate (DPF), di-n-propylphthalate (DPrP) and dicyclohexylphthalate (DCHP), was examined in uterotrophic assay. Phthalate esters dissolved in corn oil were administered to ovariectomized (OVX) female Sprague-Dawley rats by sub-cutaneous injection for three consecutive days. fiats were sacrificed 24h after final treatment, and then uterus and vagina weights were deter mined. All phthalate esters tested in this assay did not change talc uterus and vagina weights at dosage levels up to 200 mg/kg/day treatment. These results demonstrated that phthalate esters did not exhibit estrogenic activity in vivo uterotrophic assay.

  • PDF

Development of a Coupled Enzyme Assay Method for Microsomal Prostaglandin E Synthase Activity

  • Choi, Kyung-A;Park, Sung-Jun;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.384-388
    • /
    • 2010
  • Human microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the conversion of prostaglandin $H_2$ ($PGH_2$) into prostaglandin $E_2$ ($PGE_2$). To establish a stable and efficient method to assess the activity of mPGES-1, a coupled enzyme assay system using mPGES-1, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and phosphomolybdic acid (PMA) was developed. In this assay system, $PGH_2$ was converted to $PGE_2$ by mPGES-1, and then $PGE_2$ was further transformed to the 15-keto-$PGE_2$ by 15-PGDH accompanying the production of NADH, which was easily detected by fluorescence spectrometry in a multi-well plate format. During the reaction, spontaneous oxidation of $PGH_2$ was prevented by PMA. Using this novel assay, the $K_m$ value of mPGES-1 for $PGH_2$ and the $IC_{50}$ value of the previously characterized inhibitor, MK-886, were determined to be 0.150 mM and $2.8\;{\mu}M$, respectively, which were consistent with the previously reported values. In addition, low backgrounds were observed in the multi-wall plate screening of chemical compounds.

DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

  • Lee, Yongdeok;Park, Chang Je;Kim, Ho-Dong;Song, Kee Chan
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.921-928
    • /
    • 2013
  • A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

Hormonal Effects of Several Chemicals in Recombinant Yeast, MCF-7 Cells and Uterotrophic Assays in Mice

  • Park, Jin-Sung;Lee, Beom-Jun;Kang, Kyung-Sun;Tai, Joo-Ho;Cho, Jae-Jin;Cho, Myung-Haing;Inoue, Tohru;Lee, Yong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.293-299
    • /
    • 2000
  • Many methods have been developed for screening chemicals with hormonal activity. Using recombinant yeasts expressing either human estrogen receptor [Saccharomyces cerevisiae ER + LYS 8127 (YER)] or androgen receptor [S. cerevisiae AR + 8320 (YAR)], we evaluated the hormonal activities of several chemicals by induction of ${\beta}-galactosidase$ activity. The chemicals were $17{\beta}-estradiol$ (E2), testosterone (T), ${\rho}-nonylphenol$ (NP), bisphenol A (BPA), genistein (GEN), 2-bromopropane (2-BP), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and butylparaben (BP). To assess the estrogenicity of NP, the result of the in vitro recombinant yeast assay was compared with an E-screen assay using MCF-7 human breast cancer cells and an uterotrophid assay using ovariectomized mice. In the YER yeast cells, E2, NP, BPA, GEN, and BP exhibited estrogenicity in a doseresponse manner, while TCDD did not. All the chemicals tested, except T, did not show androgenicity in the YAR yeast cell. The sensitivity of the yeast (YER) assay system to the estrogenic effect of NP was similar to that of the E-screen assay. NP was also estrogenic in the uterotrophic assay. However, in terms of convenience and costs, the yeast assay was superior to the E-screen assay or uterotrophic assay. These results suggest that the recombinant yeast assay can be used as a rapid tool for detecting chemicals with hormonal activities.

  • PDF

New Yeast Cell-Based Assay System for Screening Histone Deacetylase 1 Complex Disruptor

  • Jeon, Kwon-Ho;Kim, Min-Jung;Kim, Seung-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.286-291
    • /
    • 2002
  • Histone deacetylase I (HDAC1) works as one of the components in a nucleosome remodeling (NuRD) complex that consists of several proteins, including metastasis-associated protein 1 (MTA1). Since the protein-protein interaction of HDAC1 and MTA1 would appear to be important for both the integrity and functionality of the HDAC1 complex, the interruption of the HDAC1 and MTA1 interaction may be an efficient way to regulate the biological function of the HDAC1 complex. Based on this idea, a yeast two-hybrid system was constructed with HDAC1 and MTA1 expressing vectors in the DNA binding and activation domains, respectively. To verify the efficiency of the assay system, 3,500 microbial metabolite libraries were tested using the paper disc method, and KB0699 was found to inhibit the HDAC1 and MTA1 interaction without any toxicity to the wild-type yeast. Furthermore, KB0699 blocked the interaction of HDAC1 and MTA1 in an in vitro GST pull down assay and induced morphological changes in B16/BL6 melanoma cells, indicating the interruption of the HDAC1 complex function. Accordingly, these results demonstrated that the yeast assay strain developed in this study could be a valuable tool for the isolation of a HDAC1 complex disruptor.