• 제목/요약/키워드: asphalt concrete structure

Search Result 55, Processing Time 0.045 seconds

Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction (재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

Development of Oil Leakage Stability Evaluation for Composite Aterproofing Methods using Asphalt Mastic and Modified Asphalt Sheet in Concrete Structure (콘크리트 구조물에 사용되는 개량아스팔트 시트와 아스팔트 매스틱을 복합화한 방수공법의 누유안정성 평가방법 개발)

  • Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Kim, Byoung-Il;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • In this study, a revised oil leakage evaluation method for assessing oil leakage stability of asphalt mastics used in upper slabs of below-grade residential parking lots was developed and presented. In order to verify the reliability and reproducibility of leakage results, the parameters the revised evaluation was carried out for three products with actual leakage history, and it was confirmed the leaks could be reproduced whereas the existing methods could not. To quantitatively verify the reproducibility, the filler content of the leaked samples was derived and the maximum filler content was 64% lower than that of the normal sample. The same results was found with the samples from the actual leakage site, thus verifying the reliability of the revised evaluation method.

A Study on the Viscoelastic Model of Asphalt Concrete Pavement (아스팔트 포장의 점탄성 거동 모델에 관한 연구)

  • Jo, Byung Wan;Tae, Ghi Ho;Noh, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.429-437
    • /
    • 2006
  • Existing basic mechanical models which are methods characterizing viscoelastic materials were first reviewed to account for viscoelastic behavior of the asphalt pavement structure in this paper. A viscoelastic mechanical model considering a single load of vehicles subsequently was suggested and an equation that indicates the time-dependant behavior of asphalt pavements was derived from the proposed model. Non-destructive tests using falling weight deflectometer(FWD) were performed for a test section to estimate the application of the model. Both deflections and strains procured by the equation were compared to testing results according to loading history. By observing field measurements and theoretical evaluations, if two results are compared by the features of deflection according to time history, it could be concluded that the proposed model is expected to be suitable for prediction of the behavior of asphalt pavements because there is hardly difference between field data and calculated data.

Experiments on Flow Characteristics of Asphalt Seal Composite Waterproofing Method for Underground Concrete Structure Exterior Wall Waterproofing (지하 콘크리트 구조물 외벽 방수용 아스팔트 씰재 복합방수 공법의 흘러내림 특성에 관한 실험)

  • Ko, Sang-Ung;Kim, Kyoung-Hoon;Kim, Young-Sam;Shin, Hong-Chul;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.297-303
    • /
    • 2018
  • With the changing trend of the building construction to high rising and large scaling, the underground structure has been increased, and its usage also increased and variety. Hence, to protect the underground structure against underground water, various water proofing methods has been developed. Among the many water proofing methods, the combined water proofing method using both asphalt seal and sheet has been widely used to secure the sufficient performance and decrease the construction failure. However, during the summer period of extremely high temperature conditions, the asphalt sealing materials were separated and leaked into the structure. Therefore, the aim of the research is to provide the quality standard of asphalt sealing material based on the various temperature changes depending on seasons. According to the experimental results, the temperature of the sealing materials applied on the slab was increased up to $54^{\circ}C$ which was $3^{\circ}C$ higher than the structure temperature of $51^{\circ}C$. Based on the melting test for asphalt sealing materials applied on the outside wall of the structure, in the case of water-dispersing typed materials showed significant melting down due to its slow evaporation and low viscosity. Furthermore, from the accelerated test conducted indoor conditions, a solvent-type and water-dispersing typed materials showed significant melting down due to their low viscosity and melting point in ambient conditions. Based on these results, viscosity and melting point are found as the important factors on asphalt sealing materials' quality, and it is necessary to designate the quantitative level of the viscosity and melting point for quality control.

Development Status of Korea Accelerated Loading and Environment Simulator (KALES) (한국형 포장가속시험시설의 개발현황)

  • Yang, Seong-Cheol;Yu, Tae-Seok;Eom, Ju-Yong
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.139-148
    • /
    • 2000
  • Currently existing Accelerated Pavement Testing (APT) systems developed in several countries have been employed mainly to test the performance of asphalt pavement. Meanwhile, the length of concrete pavement is similar to that of asphalt pavement in expressways of Korea. and is expected to increase due to its durability and compatibility to our weather condition. To meet the society's demand of having our own APT system which can examine the long-term performance of concrete pavement, a contract study to develop Korea Accelerated Loading and Environment Simulator (KALES) for concrete pavement has been performed for 3 years from 1997 through 1999. Through the project, a detailed design was Peformed for the KALES system in which the entire structure of KALES, loading mechanism, wandering mechanism, suspension system, driving system were proposed. Also in advance to design a full-scale KALES system, a sample scale model was manufactured and tested for operating motion and force distribution. It is evident that the proposed prototype KALES system will provide higher degree of traffic simulation and durable operation, based on the satisfactory fatigue analysis.

  • PDF

The reduction of Tire pattern noise by using pitch sequence (피치배열을 이용한 타이어 패턴노이즈 저감)

  • Hwang S.W.;Bang M.J.;Kim S.J.;Cho C.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.611-614
    • /
    • 2005
  • It is well known that tire tread pattern has much influence on the tire pattern noise. The paper describes the method of pattern noise reduction by using the pitch sequence, both on the smooth asphalt roads and on the trenched concrete roads. The noise of tire is classified as either airborne or structure borne noise. Pattern noise through the airborne is considered as a major noise source at high speeds. As block impacting and air pumping by tread patterns are major noise source, tire pattern noise can be greatly influenced by optimal pitch sequence. The goal of this paper is to provide tire engineers with pitch sequence to reduce pattern noise effectively.

  • PDF

When mend piercing crack of large size mat basis, study of perforation and vottom repair that use water jet (대형매트기초의 관통균열 보수시 WATER JET을 이용한 천공과 저면보수에 관한 연구)

  • 박성우;한송수;이상헌;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.577-580
    • /
    • 2003
  • Problem of repairing by boring is that it deteriorates stabelety and durability of structure by permeation of seawater from underneath after damage and repair of reinforcing rod regarding of spot. The purpose of this study is to improve the porblem by using the repair method of general boring to mend the of large mat basis. Direction of thes experiment is to apply the new repair material and the method to control the blazing fire factor caused by the crack from the foundation of large mat and also to estimate it's integrity. New method of construction is method of contruction that do speace scurity in vertical drilling and bottom useing water jet. New material used bantonite and rubberized asphalt. Test result existent repair method of construction large size mat basis perforation is difficult and reinforcing rod can be damaged coule there were a lot of problems with re-water leakage of crack repair region, but overcomes existent short coming by method that apply in this study.

  • PDF

Temperature Effect on Pavement Types of Bimodal Tram Dedicated Lane (바이모달 트램 전용선로 포장 형태에 따른 온도의 영향)

  • Park, Young-Kon;Yoon, Hee-Taek;Mok, Jai-Kyun;Kim, Ryang-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2107-2112
    • /
    • 2010
  • To analyze the effect of temperature on pavement types of dedicated lane, we have performed a temperature monitoring for pavements which were constructed in test track for Bimodal Tram. These pavements classified into four types; natural and artificial lawn, concrete and asphalt. Dedicated lane composed of natural and artificial lawn has a complex structure with concrete slab in contact surface of tires, and with 1m natural or artificial lawn in the middle part of lane. From monitoring results for pavements, dedicated lane with natural lawn shows lower temperature value compared with other dedicated lanes, and it is expected to decrease the heat island effect of conventional road if constructed.

  • PDF

Case Study of Geogrid Reinforcement in Runway of Inchon International Airport (지오그리드를 활용한 인천국제공항 활주로 보강사례)

  • 신은철;오영인;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.105-116
    • /
    • 1999
  • The Inchon International Airport site was formed by reclaimed soil from the sea. The average thickness of soft soil Is about 5 m and most of soft soils are normally consolidated or slightly over consolidated. There are many box culverts which are being constructed under the runways in the airfield. Sometimes, differential settlement can be occurred in the adjacent of box culvert or underground structures at the top layer of runway Soil compaction at very near to the structure is not easy all the time. Thus, one layer of geogrid was placed at the bottom of lean concrete layer for the concrete paved runway and at the middle of cement stabilized sub-base course layer for the asphalt paved runway. The length of geogrid reinforcement is 5m from the end of box culvert for both sides. The extended length of geogrid was 2m from the end of backfill soil in the box culvert. The tensile strength tests of geogrid were conducted for make sure the chemical compatibility with cement treated sub-base material. The location of geogrid placement for the concrete paved runway was evaluated. The construction damage to the geogrid could be occurred. Because the cement treated sub-base layer or lean concrete was spread by the finisher. The magnitude of tensile strength reduction was 1.16%~1.90% due to the construction damage and the ultimate tensile strength is maintained with the specification required. Total area of geogrid placement in this project is about 50,000 $m^2$.

  • PDF

A Study on the Evaluation of Tensile Performance According to Pareral Jointing Methods of the Sheet Membrane Waterproofing System (방수시트의 평행접합방법에 따른 인장성능 평가연구)

  • Lee Jeoung-Yun;Oh Mi-Hyun;Kwak Kyu-Sung;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.39-44
    • /
    • 2004
  • A heat and room temperature construction method of asphalt have been mainly applying to rooftop waterproofing in concrete structure, and the rest construction method are sheet, membrane and mortar waterproofing construction method. In particular, joint method in sheet waterproof method is as overlap joint which on being reinforced with fiber and tape, have been applying for job site to mechanical fix using protection disk and anchorage and metal ironwork on the end of sheet. These construction method cause cutting off joint of sheet as behavior of structure according to repairs of sheet itself and thermal conduct, outdoor air environment. In conclusion, we analyzed and examined the application of various sheets and piece ashes about superior 'I' joint which divide from one and the other sheet and progressed about joint construction method of fixing method for overlap.

  • PDF