• Title/Summary/Keyword: ascomycete yeast

Search Result 5, Processing Time 0.02 seconds

Zygotorulaspora cornina sp. nov. and Zygotorulaspora smilacis sp. nov., Two Novel Ascomycetous Yeast Species Isolated from Plant Flowers and Fruits

  • Ahn, Chorong;Kim, Minkyeong;Kim, Changmu
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.521-526
    • /
    • 2021
  • Three isolates belonging to the ascomycetous genus Zygotorulaspora were obtained from the fruits of Cornus officinalis and Smilax china, and flowers of Dendranthema zawadskii var. latilobum in Gongju-si, Korea. Phylogenetic Analyses of the LSU D1/D2 domain and ITS region sequences supported the recognition of two new species: Zygotorulaspora cornina sp. nov. (type strain NIBRFGC000500475 = KACC93346PPP) and Zygotorulaspora smilacis sp. nov. (type strain NIBRFGC000500476 = KACC93347PPP). The two novel species revealed no growth on D-Galactose, unlike the other six species in the genus Zygotorulaspora. They are distinguished from each other by their phylogenetic differences and phenotypic characteristics such as assimilation of xylitol, 5-keto-D-gluconate, and ethanol. All species in the genus Zygotorulaspora including the two novel species have phenotypic traits of genus Zygotorulaspora: asci are persistent, sucrose and raffinose are assimilated, and m-inositol is not required for growth, and they are mainly associated with plants.

Msi1-Like (MSIL) Proteins in Fungi

  • Yang, Dong-Hoon;Maeng, Shinae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Msi1-like (MSIL) proteins, which are eukaryote-specific and contain a series of WD40 repeats, have pleiotropic roles in chromatin assembly, DNA damage repair, and regulation of nutrient/stress-sensing signaling pathways. In the fungal kingdom, the functions of MSIL proteins have been studied most intensively in the budding yeast model Saccharomyces cerevisiae, an ascomycete. Yet their functions are largely unknown in other fungi. Recently, an MSIL protein, Msl1, was discovered and functionally characterized in the pathogenic yeast Cryptococcus neoformans, a basidiomycete. Interestingly, MSIL proteins appear to have redundant and unique roles in both fungi, suggesting that MSIL proteins may have evolutionarily divergent roles in different parts of the fungal kingdom. In this review, we will describe the current findings regarding the role of MSIL proteins in fungi and discuss future directions for research on this topic.

A Nudix Hydrolase Protein, Ysa1, Regulates Oxidative Stress Response and Antifungal Drug Susceptibility in Cryptococcus neoformans

  • Lee, Kyung-Tae;Kwon, Hyojeong;Lee, Dohyun;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • A nucleoside diphosphate-linked moiety X (Nudix) hydrolase-like gene, YSA1, has been identified as one of the gromwell plant extract-responsive genes in Cryptococcus neoformans. Ysa1 is known to control intracellular concentrations of ADP-ribose or O-acetyl-ADP-ribose, and has diverse biological functions, including the response to oxidative stress in the ascomycete yeast, Saccharomyces cerevisiae. In this study, we characterized the role of YSA1 in the stress response and adaptation of the basidiomycete yeast, C. neoformans. We constructed three independent deletion mutants for YSA1, and analyzed their mutant phenotypes. We found that ysa1 mutants did not show increased sensitivity to reactive oxygen species-producing oxidative damage agents, such as hydrogen peroxide and menadione, but exhibited increased sensitivity to diamide, which is a thiol-specific oxidant. Ysa1 was dispensable for the response to most environmental stresses, such as genotoxic, osmotic, and endoplasmic reticulum stress. In conclusion, modulation of YSA1 may regulate the cellular response and adaptation of C. neoformans to certain oxidative stresses and contribute to the evolution of antifungal drug resistance.

Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii

  • Choi Sang-Dun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.

Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola

  • Choi, Yoon-E;Lee, Changsu;Goodwin, Stephen B.
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.