• Title/Summary/Keyword: asbestos risk

Search Result 64, Processing Time 0.025 seconds

A Risk Assessment of Asbestos Fiber Leaks to Environment during Asbestos Removal Activity in Buildings (건물 내 석면제거 작업과 공기 중 석면의 외부누출 위험성 평가)

  • Paik, Namwon;Lee, Soungcheoul;Byeon, Jaecheol;Lee, Donghee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • Objectives: The objectives of this study were to investigate whether airborne fibers were released to the outside air from the asbestos removal area in buildings, and to confirm the existence of asbestos fibers in samples using transmission electron microscopy(TEM). Methods: A total of 1,295 samples was collected from inside and outside 155 asbestos removal areas. To investigate the release of asbestos fibers from the removal area, samples were collected at three locations, such as an entrance to change room, an exit of negative pressure unit(NPU) and perimeter areas. Samples were also collected in the removal area prior to and after removal activity. All samples were analyzed by phase contrast microscopy(PCM) and one-tenth of the samples was analyzed using TEM to discriminate asbestos fibers. Results: During the asbestos removal activity, 27(4.1%) of 662 samples collected outside the removal area showed airborne fiber concentrations equal to or in excess of 0.01 f/cc, the permissible emission standard of the Korean Ministry of Environment. Further, 111 samples were analyzed using TEM. The distribution of asbestos fiber concentrations was log-normal. It was found that 51 of 111 samples(46%) contained asbestos fibers. Conclusions: There is a potential risk of asbestos exposure among neighbors and the public outside the asbestos removal areas. It is recommended that the asbestos removal work be conducted strictly following the specifications required by government and/or professional organizations.

Asbestos Exposure and Risk Assessment by ABS(Activity Based Sampling) for Former Asbestos Mining Areas in Korea (우리나라 일부 석면광산 지역에서 ABS를 이용한 석면노출 및 위해성 평가)

  • Lee, Junhyeok;Kim, Daejong;Choi, Sungwon;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2015
  • Objectives: The aim of this study was to investigate the exposure and risk assessment of residents near asbestos mines in Korea. Methods: To assess asbestos types and airborne concentrations, air monitoring was performed in the neighborhoods of Kwangcheon (KC) and Sinsuk (SS) mines, which were leading South Korean mines in the past. In addition, activity-based-sampling (ABS) of residents' particular activities were conducted in order to estimate the Excess Lifetime Cancer Risks (ELCRs) for the residents. Conclusions: The average concentration of airborne asbestos in KC was 0.0014 f/cc and 0.0015 f/cc by PCM and TEM, respectively. In SS it was equal at 0.0012 f/cc by PCM and TEM. No statistically significant difference was found in the average concentration of airborne asbestos between the two mines. The average asbestos concentration of ABS was 0.0048 f/cc (PCM) and 0.0042 f/cc (TEM) in KC, while it was 0.0137 f/cc (PCM) and 0.0125 f/cc (TEM) in SS. It was found that the average asbestos concentration of ABS in SS was statistically significantly higher than that of KC (p<0.01). The results of ELCRs by scenario in KC showed that the scenarios of bicycle, car, weed control, weed whacking, child playing in the dirt, and physical training fell within $1{\times}0^{-6}-1{\times}10^{-4}$, which is the acceptable range of ELCR. The scenarios of motorcycle, walker, digging, and field sweeping, however, exceeded the acceptable range. In SS, only the scenario of car fell within the acceptable range, while all of the other scenarios exceeded the acceptable range.

Cancer Incidence in Asbestos-Exposed Workers: An Update on Four Finnish Cohorts

  • Nynas, Pia;Pukkala, Eero;Vainio, Harri;Oksa, Panu
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.169-174
    • /
    • 2017
  • Background: We assessed the cancer risks of four different Finnish asbestos-exposed cohorts. We also explored if the cohorts with varying profiles of asbestos exposure exhibited varying relative risks of cancer. Methods: The incident cancer cases for the asbestos-exposed worker cohorts were updated to the end of 2012 using the files of the Finnish Cancer Registry. The previously formed cohorts consisted of asbestos mine workers, asbestosis patients, asbestos sprayers, and workers who had taken part in a screening study based on asbestos exposure at work. Results: The standardized incidence ratio (SIR) for mesothelioma varied from about threefold to > 100-fold in the different cohorts. In the screening cohort the SIR for mesothelioma was highest in 2003-2007, In other cohorts it was more constant in 5-year period inspection. The SIR for lung cancer was about twofold to tenfold in all except the screening cohort. Asbestos sprayers were at the highest risk of mesothelioma and lung cancer. Conclusion: The SIR for mesothelioma is high in all of the cohorts that represent different kinds of asbestos exposure. The smaller SIR for mesothelioma in the screening cohort with lowest level of asbestos exposure might suggest dose-responsiveness between asbestos exposure and mesothelioma. It does seem that the highest risk of lung cancer in these cohorts except in the youngest of the cohorts, the screening cohort, is over. The highest SIR for lung cancer of the asbestosis patient and sprayers cohort is explained by their heavy asbestos exposure.

Asbestos is Still with Us: Repeat Call for a Universal Ban

  • Ramazzini, Collegium
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-169
    • /
    • 2010
  • All forms of asbestos are proven human carcinogens. All forms of asbestos cause malignant mesothelioma, lung, laryngeal, and ovarian cancers, and may cause gastrointestinal and other cancers. No exposure to asbestos is without risk, and there is no safe threshold of exposure to asbestos. Asbestos cancer victims die painful lingering deaths. These deaths are almost entirely preventable. When evidence of the carcinogenicity of asbestos became incontrovertible, concerned parties, including the Collegium Ramazzini, called for a universal ban on the mining, manufacture and use of asbestos in all countries around the world. Asbestos is now banned in 52 countries, and safer products have replaced many materials that once were made with asbestos. Nonetheless, a large number of countries still use, import, and export asbestos and asbestos-containing products. And still today in many countries that have banned other forms of asbestos, the so-called "controlled use" of chrysotile asbestos continues to be permitted, an exemption that has no basis in medical science but rather reflects the political and economic influence of the asbestos mining and manufacturing industry. To protect the health of all people in the world, industrial workers, construction workers, women and children, now and in future generations - the Collegium Ramazzini calls again today on all countries of the world, as we have repeatedly in the past, to join in the international endeavor to ban all forms of asbestos. An international ban on asbestos is urgently needed.

Melting Characteristics of Asbestos Cement Slate on Basicity Control (염기도 조절에 의한 석면슬레이트 용융특성)

  • Yun, Jinhan;Keel, Sangin;Min, Taijin;Lee, Chungkyu;Jang, Duhun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.159.2-159.2
    • /
    • 2010
  • Asbestos is the collective name for a group of naturally occurring minerals in their fibrous form and hydrous silicates of magnesium and a mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant. Asbestos has been used for a wide range of manufactured goods, because of its fiber strength and heat resistant properties. Nevertheless harmful of asbestos is quite serious. Exposure to airborne friable asbestos may result in a potential health risk because persons breathing the air may breathe in asbestos fibers. Continued exposure can increase the amount of fibers that remain in the lung. Fibers embedded in lung tissue over time may cause serious lung diseases including asbestosis, lung cancer. In this paper, we carried out as fundamental study for dispose of asbestos cement slate safely and perfectly. Melting Temperature of asbestos need to more than $1,520^{\circ}C$ and specially asbestos cement slate need more energy than that of pure asbestos. We need to decrease melting temperature of asbestos cement slate for economical efficiency. To the purpose, glass and bottom ash were chosen as additives for basicity control. we analyzed about properties of asbestos cements slate, melting characteristics on the additives ratio and temperature. We confirmed about harmlessness of melting slag through analysis of scanning electron microscope(SEM) and x-ray diffractometer(XRD).

  • PDF

Risk Assessment of Baby Powder Exposure through Inhalation

  • Moon, Min-Chaul;Park, Jung-Duck;Choi, Byung-Soon;Park, So-Young;Kim, Dong-Won;Chung, Yong-Hyun;Hisanaga, Naomi;Yu, Il-Je
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.137-141
    • /
    • 2011
  • This study was conducted to assess the exposure risk through inhalation to baby powder for babies and adults under simulated conditions. Baby powder was applied to a baby doll and the amount of baby powder consumed per application was estimated. The airborne exposure to baby powder during application was then evaluated by sampling the airborne baby powder near the breathing zones of both the baby doll and the person applying the powder (the applicator). The average amount of baby powder consumed was 100 mg/application, and the average exposure concentration of airborne baby powder for the applicator and baby doll was 0.00527 mg/$m^3$ (range 0.00157~0.01579 mg/$m^3$) and 0.02207 mg/$m^3$ (range 0.00780~0.04173 mg/$m^3$), respectively. When compared with the Occupational Exposure Limit of 2 mg/$m^3$ set by the Korean Ministry of Labor and the Threshold Limit Value (TLV) of 2 mg/$m^3$ set by the ACGIH (American Conference of Governmental Industrial Hygienists), the exposure concentrations were much lower. Next, the exposure to asbestos-containing baby powder was estimated and the exposure risk was assessed based on the lung asbestos contents in normal humans. As a result, the estimated lung asbestos content resulting from exposure to asbestos-containing baby powder was found to be much lower than that of a normal Korean with no asbestos-related occupational history.

A Study on asbestos fibers and the notice of inhabitant in the Bu-pyung station (부평역에서의 공기중 석면 노출 실태 및 인식도 조사)

  • 변상훈;주종순;손종렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • Asbestos is composed of long thin fibers approximately diameter $0.02\mu\textrm{m}$ and flexibility, strength, electrical, thermal conditions. The most common asbestos are : Chrysotile(white), Crocidolite(Blue), Amosite(Brown). Asbestos was first introduced in the Korea in 1960 and installation of these products continue through the late 1970's and even the early 1980's. Bu-pyung basement stores in Korea were surveyed from September 25 to October 26, 2001. The purpose of this research was to evaluate worker-exposure to asbestos, comparing to the standards and to research notice of inhabitants about asbestos. Fifteen personal samples and six areas were collected using Gillian Air Sampler. Result of this research were as follows. 1. The most of asbestos exposure concentrations keeps to the criterion(OSHA(Occupational Safety and Health Adminisoation), NIOSH) but forty three percent of the Six samples exceeded the EPA (Environmental protection Agency) of 0.01 fibers/cc. 2. All of places compliced to the standards but there is no "Safe level" of asbestos exposure to the people. Especially people who are expose more frequently over a long time are more at risk.

Pulmonary Fibrosis caused by Asbestos Fibers in the Respiratory Airway

  • Jung, Ji-Woo;Kim, Eung-Sam
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.111-120
    • /
    • 2021
  • Asbestos products had been widely used until 2007 in Korea since the 1930s. A total ban on their production and applications has been imposed because of the toxic effect of asbestos fibers on the human health. The inhaled asbestos fibers increase reactive oxygen species and inflammatory reactions in the respiratory airway including the alveolar sac, resulting in DNA damages and secretion of several inflammatory cytokines or chemokines. These paracrine communications promote the proliferation of fibroblasts and the synthesis of collagen fibers, thereby depositing them into the extracellular matrix at the interstitial space of alveoli. The fibrotic tissue hindered the gas exchange in the alveolus. This reviews describes not only the cytotoxic effects of asbestos fibers with different physical or chemical characteristics but also the interaction of cells that make up the respiratory airway to understand the molecular or cellular mechanisms of asbestos fiber-induced toxicity. In addition, we propose a pulmonary toxicity research technique based on the mini-lung that can mimic human respiratory system as an alternative to overcome the limitations of the conventional risk assessment of asbestos fibers.

Possible Health Risk Over Talc (탈크노출과 건강상의 위험)

  • Park, Dong-Uk
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.235-238
    • /
    • 2009
  • In Korea, talc that has been widely used for a lot of consumer products as well as industrial usage until recently was found to be contaminated with asbestos. It becomes a major social issue. Critical health risk about both talc and talc contaminated with asbestos was summarized through literature review. It has been confirmed that talc can pose ovarian cancer when talc powder is used in the genital area. International Agency for Research on Cancer (IARC) already concluded that the perineal use of cosmetic talc can cause possibly carcinogenic to humane(Group 2B), although there was study reporting the lack of a consistent an established correlation between perineal dusting frequency and ovarian tissue talc concentrations and the lack of a consistent dose-response relationship with ovarian cancer risk. The association between talc exposure and ovarian cancer is as strong as in recent studies. The epidemiological studies to date provided inadequate evidence for the carcinogenicity of either inhaled or ingested talc that does not contain asbestos or asbestosiform fibers. Future studies should focus on seeking evidence in talc-exposed populations, collecting reliable information on age at initial used of body powder, exposure assessments related to talc use and dose response relationship in order to identify possible risk of talc ingested or inhaled.

Physiological Strains of Asbestos Abatement Work Wearing Protective Clothing in Hot-Humid Environments

  • Tochihara, Yutaka;Ohnaka, Tadakatsu
    • Fashion & Textile Research Journal
    • /
    • v.2 no.5
    • /
    • pp.411-415
    • /
    • 2000
  • To be able to work safely and efficiency, the Threshold Limit Values (TLV) for work in the heat are widely used. Since these TLV are only applicable to workers in regular clothing, TLV should be adjusted when applied to the asbestos removal workers who wear extra impermeable protective clothing. Although abbreviated guidelines for heat stress exposure have been proposed, literature advocating their use in the asbestos removal industry is limited. Therefore, we planed a survey to evaluate the workload of asbestos abatement workers in summer, and an experiment with climatic chambers to evaluate the effects of resting in a cool environment between work periods. From these studies, we got following conclusions. There is a high risk of suffering from heat illness by asbestos abatement work in summer in Japan. It is proposed to create a cool room inside the workplace of asbestos abatement work to reduce thermal stress.

  • PDF