This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes accord Eng to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems ...
This paper aims to develop a prediction model for the product quality of a casting process. Prediction of the product quality utilizes an artificial neural network (ANN) in order to renovate the manufacturing technology of the root industry. Various aspects of the research on the prediction algorithm for the casting process using an ANN have been investigated. First, the key process parameters have been selected by means of a statistics analysis of the process data. Then, the optimal number of the layers and neurons in the ANN structure is established. Next, feed-forward back propagation and the Levenberg-Marquardt algorithm are selected to be used for training. Simulation of the predicted product quality shows that the prediction is accurate. Finally, the proposed method shows that use of the ANN can be an effective tool for predicting the results of the casting process.
Automated production system is composed of many complicated techniques and it become a very difficult task to control, monitor and diagnose this compound system. Moreover, it is required to develop an effective diagnosing technique and reduce the diagnosing time while operating the system in parallel under many faults occurring concurrently. This study develops a Modular Artificial Neural Network(MANN) which can perform a diagnosing function of multiple faults with the following steps: 1) Modularizing a complicated system into subsystems. 2) Formulating a hierarchical structure by dividing the subsystem into many detailed elements. 3) Planting an artificial neural network into hierarchical module. The system developed is implemented on workstation platform with $X-Windows^{(r)}$ which provides multi-process, multi-tasking and IPC facilities for visualization of transaction, by applying the software written in $ANSI-C^{(r)}$ together with $MOTIF^{(r)}$ on the fault diagnosis of PI feedback controller reactor. It can be used as a simple stepping stone towards a perfect multiple diagnosing system covering with various industrial applications, and further provides an economical approach to prevent a disastrous failure of huge complicated systems.
This research was carried out investigate the removed T-P, T-N and anion surfactants using Autoclaved Lightweight Concrete(ALC) in wastewater treatment system. Effects of pH, TDS on aqueous solution was measured. Specific area which measured by BET was $27.66m^2/g$. The phosphorous, nitrogen and anion surfactants removal efficiencies were examined by using artificial waste water(T-P : 66~73mg/L, T-N : 56~136mg/L and anion surfactants : 10~31mg/L). The results showed that the ALC was effective material as a adsorbent due to the structure and porosity. It was found that anion surfactants removed was 85~95%, phosphate removed was 92% and nitrogen removed was 90% in artificial wastewater. Agitation process was more effective than aeration process in that case of nitrogen removal system using ALC.
To delineate the internal structures of alluvial aquifer, high resolution seismic and GPR methods were adopted in Buyeo Gunsu-Ri area. The result of seismic refraction survey shows the water table of the aquifer and the result of seismic reflection reveals the basement and somewhat dominant internal structures of alluvial aquifer. The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey. GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units the lower inclined heterogeneous strata and the upper horizontally stratified strata. According to the increase of demand for water resource using artificial recharge in alluvium, it is believed that the information acquired by high resolution geophysical methods will have an important roles for the effective and sustainable development and usage of groundwater in alluvial aquifer.
인공신경망(Artificial Neural Network)을 이용하여 RC Mock-up 구조물의 손상위치 및 손상정도를 단계적으로 추정하였다. 대상 구조물은 가진실험을 통하여 구조물의 응답을 취득하고 구조물식별기법(Structural System Identification)을 통하여 구조물의 동특성을 찾았다. 유한요소해석프로그램을 사용하여 동특성이 계측치와 가장 유사한 기본해석모델을 만든 후 이 기본해석모델을 이용하여 학습데이터를 생성하였다. 기존 인공신경망을 이용한 손상탐지를 개선하고자 본 연구에서는 인공신경망 학습데이터를 분석하였고 효과적인 손상탐지를 위하여 학습데이터를 가공하였다. 가공된 학습데이터를 사용하여 단계별 손상탐지를 실시하였고 기존 손상탐지 방법보다 좋은 결과를 유도하였다.
Circulant Feedback Delay Networks (CFDN's), whose feedback matrix is circulant to control the stability of system and time-frequency response easier than unitary one, were recently proposed. However, the drawback of this structure is that the flatness of the frequency response of CFDN's is not enough and it is difficult to adjust the placement of zeros to decrease this problem. Therefore, we propose Modified CFDN's (MCFDN's) consisted of a general recursive filter and CFDN's to maintain maximally the impulse response of CFDN's and improve the flatness of frequency response without adjusting the placement of zeros. The delay unit of a general recursive filter's feedback loop is replaced by CFDN's, are omitted the direct path. We represent the usefulness of MCFDN's to build artificial reverberators and the main parameter to determine characteristics of MCFDN's in this paper.
An artificial neural network (ANN) was used to study the relationship between the glass transition temperature (T$_{g}$) and the structure of homopolymers. The input is very important for the ANN. In this paper, six kinds of input vectors were designed for the ANN. Of the six approaches, the best one gave the is T$_{g}$ of 251 polymers with a standard deviation of 8 K and a maximum error of 29 K. The trained ANN also predicted the T$_{g}$ of 20 polymers which are not included in the 251 polymers with a standard deviation of 7 K and a maximum error of 21 K. 21 K.
A artificial neural network model was developed to analyze and forecast the flow fluctuation at small streams in the Balan watershed. Backpropagation neural networks were found to perform very well in forecasting daily streamflows. In order to deal with slow convergence and an appropriate structure, two algorithms were proposed for speeding up the convergence of the backpropagation method, and the Bayesian Information Criterion(BIC) was proposed for obtaining the optimal number of hidden nodes. From simulations using daily flows at the HS#3 watershed of the Balan Watershed Project, which is 412,5 ㏊ in size and relatively steep in landscape, it was found that those algorithms perform satisfactorily.
Flow in the blood sac of the Korean artificial heart is numerically simulated by finite element method. Fluid-structure interaction algorithm is employed to compute the 3D blood flow interacting with the sac material. The motion of the actuator is simplified by a time-varying pressure boundary condition imposed on the outer surface of the sac. Numerical solutions show that there are a strong flow into the outlet and a stagnation flow near the inlet during systole. Shear stress distribution is also delineated to assess the possibility of thrombus formation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.