• Title/Summary/Keyword: artificial structure

Search Result 1,512, Processing Time 0.027 seconds

Prediction of Solvent Effects on Rate Constant of [2+2] Cycloaddition Reaction of Diethyl Azodicarboxylate with Ethyl Vinyl Ether Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.139-145
    • /
    • 2005
  • Artificial neural networks (ANNs), for a first time, were successfully developed for the modeling and prediction of solvent effects on rate constant of [2+2] cycloaddition reaction of diethyl azodicarboxylate with ethyl vinyl ether in various solvents with diverse chemical structures using quantitative structure-activity relationship. The most positive charge of hydrogen atom (q$^+$), dipole moment ($\mu$), the Hildebrand solubility parameter (${\delta}_H^2$) and total charges in molecule (q$_t$) are inputs and output of ANN is log k$_2$ . For evaluation of the predictive power of the generated ANN, the optimized network with 68 various solvents as training set was used to predict log k$_2$ of the reaction in 16 solvents in the prediction set. The results obtained using ANN was compared with the experimental values as well as with those obtained using multi-parameter linear regression (MLR) model and showed superiority of the ANN model over the regression model. Mean square error (MSE) of 0.0806 for the prediction set by MLR model should be compared with the value of 0.0275 for ANN model. These improvements are due to the fact that the reaction rate constant shows non-linear correlations with the descriptors.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

Artificial Neural Network-based Weight Factor Determination Method for the Enhanced XML Schema Matching of Bridge Engineering Documents (교량 건설 문서의 강화된 XML 스키마 매칭을 위한 인공신경망 기반의 요소 가중치 선정 방안)

  • Park, Sang I.;Kwon, Tae-Ho;Park, Junwon;Seo, Kyung-Wan;Yoon, Young-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Bridge engineering documents have essential contents that must be referenced continuously throughout a structure's entire life cycle, but research related to the quality of the contents is still lacking. XML schema matching is an excellent technique to improve the quality of stored data; however, it takes excessive computing time when applied to documents with many contents and a deep hierarchical structure, such as bridge engineering documents. Moreover, it requires a manual parametric study for matching elements' weight factors, maintaining a high matching accuracy. This study proposes an efficient weight-factor determination method based on an artificial neural network (ANN) model using the simplified XML schema-matching method proposed in a previous research to reduce the computing time. The ANN model was generated and verified using 580 data of document properties, weight factors, and matching accuracy. The proposed ANN-based schema-matching method showed superiority in terms of accuracy and efficiency compared with the previous study on XML schema matching for bridge engineering documents.

Investigation of Fungal Strains Composition in Fruit Pollens for Artificial Pollination

  • Do, Heeil;Kim, Su-Hyeon;Cho, Gyeongjun;Kim, Da-Ran;Kwak, Youn-Sig
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.249-257
    • /
    • 2021
  • Plants pollination are conducted through various pollinators such as wind, animals, and insects. Recently, the necessity for artificial pollination is drawing attention as the proportion of natural pollinators involved is decreasing over the years. Likewise, the trade in pollen for artificial pollination is also increasing worldwide. Through these imported pollens, many unknown microorganisms can flow from foreign countries. Among them, spores of various fungi present in the particles of pollen can be dispersed throughout the orchard. Therefore, in this study, the composition of fungal communities in imported pollen was revealed, and potential ecological characteristics of the fungi were investigated in four types of imported pollen. Top 10 operational taxonomic unit (OTU) of fungi were ranked among the following groups: Alternaria sp., Cladosporium sp., and Didymella glomerata which belong to many pathogenic species. Through FUNGuild analysis, the proportion of OTUs, which is assumed to be potentially plant pathogens, was higher than 50%, except for apple pollen in 2018. Based on this study of fungal structure, this information can suggest the direction of the pollen quarantine process and contribute to fungal biology in pollen

The Importance of Manpower in Major Education as an Example of Artificial Intelligence Development in Construction (건설 인공지능 개발사례로 보는 전공교육 인력의 중요성)

  • Heo, Seokjae;Lee, Sanghyun;Lee, Seungwon;Kim, Myunghun;Chung, Lan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.223-224
    • /
    • 2021
  • The process before the model learning stage in AI R&D can be subdivided into data collection/cleansing-data purification-data labeling. After that, according to the purpose of development, it goes through a stage of verifying the model by performing learning by using the algorithm of the artificial intelligence model. Several studies describe an important part of AI research as the learning stage, and try to increase the accuracy by changing the structure and layer of the AI model. However, if the refinement and labeling process of the learning data is tailored only to the model format and is not made for the purpose of development, the desired AI model cannot be obtained. The latest research reveals that most AI research failures are the failure of the learning data rather than the structure of the AI model. analyzed.

  • PDF

Coupled IoT and artificial intelligence for having a prediction on the bioengineering problem

  • Chunping Wang;Keming Chen;Abbas Yaseen Naser;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.127-140
    • /
    • 2023
  • The vibration of microtubule in human cells is the source of electrical field around it and inside cell structure. The induction of electrical field is a direct result of the existence of dipoles on the surface of the microtubules. Measuring the electrical fields could be performed using nano-scale sensors and the data could be transformed to other computers using internet of things (IoT) technology. Processing these data is feasible by artificial intelligence-based methods. However, the first step in analyzing the vibrational behavior is to study the mechanics of microtubules. In this regard, the vibrational behavior of the microtubules is investigated in the present study. A shell model is utilized to represent the microtubules' structure. The displacement field is assumed to obey first order shear deformation theory and classical theory of elasticity for anisotropic homogenous materials is utilized. The governing equations obtained by Hamilton's principle are further solved using analytical method engaging Navier's solution procedure. The results of the analytical solution are used to train, validate and test of the deep neural network. The results of the present study are validated by comparing to other results in the literature. The results indicate that several geometrical and material factors affect the vibrational behavior of microtubules.

Research on construction simulation technology of civil building structure engineering based on artificial intelligence

  • Zhongkuo Zhang;Jie Ren
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • Nanotechnology is the latest technology developed by humanity, trying to use the molecular properties of materials found in nature to create devices that solve the problems plaguing humanity and their efficiency. Man is also trying to change the meaning of molecules to nano so that a body made up of these particles has all the properties of these particles. Nanotechnology is not a new field but a new approach in all areas. A new perspective in concrete technology has been created by the use of nanoparticles in recent years. Adding silica nanoparticles to concrete mixes improves its properties and increases its strength. However, different results and reported mechanisms explain the behavior of nanoparticles in the mixture; Therefore, it took much work to generalize the results and predict the behavior of nano concretes. This article is about the construction simulation technology of civil engineering based on artificial intelligence, which deals with the effect of nanoparticles on improving concrete properties. This was demonstrated by analyzing laboratory samples in various mixture configurations and observing how silica nanoparticles affected their microstructure with scanning electron microscopy (SEM). Based on SEM measurements, silica nanoparticles have a powerful effect because of their specific surface area. Their increase and decrease must be sought in interacting with the filling and nucleation mechanism and the pozzolanic activity. Each of these mechanisms dominates at different ages of hydration and affects the microstructure and mechanical properties of concrete.

A Study on an Artificial Neural Network Design using Evolutionary Programming (진화 프로그래밍 기법을 이용한 신경망의 자동설계에 관한 연구)

  • 강신준;고택범;우천희;이덕규;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.281-287
    • /
    • 1999
  • In this paper, a design method based on evolutionary programming for feedforward neural networks which have a single hidden layer is presented. By using an evolutionary programming, the network parameters such as the network structure, weight, slope of sigmoid functions and bias of nodes can be acquired simultaneously. To check the effectiveness of the suggested method, two numerical examples are examined. The performance of the identified network is demonstrated.

  • PDF

A Feasibility Study on Application of Immune Network for Intelligent Controller of a Multivariable System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.115.5-115
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a multivariable system. Then artificial immune network always has a new paraller decentralized processing mechanism for various situations, since antibodies communication to each other among different species of antibodies/B-cells through the simulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach ...

  • PDF

Application of the Artificial Neural Network Technique for Estimation of Structure Responses due to Wind Load (풍하중으로부터 구조반응 추정을 위한 인공신경망 기법의 적용)

  • Moon, Jin-Cheol;Park, Hyo-Seon
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • 고층건물의 최상층 수평변위는 해당 건물의 안전성 및 사용성 평가에 중요한 지표가 된다 이러한 건물의 수평변위는 주로 풍하중에 기인한다 본 논문에서는 이러한 구조반응을 풍하중에 기인한 풍속데이터로부터 직접 추정하기 위해서 인공신경망(Artificial Neural Network, ANN)을 도입하였다 이에 대한 적용성을 판단하기 위해서 고층건물을 형상화한 모형테스트를 실시하고 풍향, 풍속, 변위 값을 얻었다. 이후 인공신경망에 적용시켜 실제 실험 데이터와의 비교를 통해 타당성을 검토하였다.

  • PDF