• Title/Summary/Keyword: artificial radioactive nuclide

Search Result 6, Processing Time 0.017 seconds

A Study on Improvement of Scaling Factor Prediction Using Artificial Neural Network

  • Lee, Sang-Chul;Hwang, Ki-Ha;Kang, Sang-Hee;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.534-538
    • /
    • 2003
  • Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed knowledge of the natures and quantities of radionuclides in waste package. Many of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the Indirect method by which the concentrations of DTM (Difficult-to-Measure) nuclide is decided using the relation of concentrations (Scaling Factor) between Key (Easy-to-Measure) nuclide and DTM nuclide with measured concentrations of Key nuclide. In general, scaling factor is determined by using of log mean average (LMA) and regression. These methods are adequate to apply most corrosion product nuclides. But in case of fission product nuclides and some corrosion product nuclides, the predicted values aren't well matched with the original values. In this study, the models using artificial neural network (ANN) for C-14 and Sr-90 are compared with those using LMA and regression. The assessment of models is executed in the two parts divided by a training part and a validation part. For all of two nuclides in the training part, the predicted values using ANN are well matched with the measured values compared with those using LMA and regression. In the validation part, the accuracy of the predicted values using ANN is better than that using LMA and is similar to or better than that using regression. It is concluded that the predicted values using ANN model are better than those using conventional model in some nuclides and ANN model can be used as the complement of LMA and regression model.

  • PDF

Optimization of Artificial Neural Network Model in Scaling Factor Determination Method

  • Lee, Sang-Chul;Hwang, Ki-Ha;Kang, Sang-Hee;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.254-254
    • /
    • 2004
  • Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed information about the characteristics and the quantities of radionuclides in waste package. Most radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the indirect method by which the concentration of the Difficult-to-Measure (DTM) nuclide is estimated using the correlations of concentration-it is called the scaling factor-between Easy-to-Measure (Key) nuclides and DTM nuclides with the measured concentration of the Key nuclide.(omitted)

  • PDF

A Study on Minimum Detection Limit of Environmental Radioactivity in HPGe Detector (HPGe 검출기에서 환경방사능측정의 검출하한치에 관한 연구)

  • Jang, Eun-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • Based on basic concept of detection limit, sample measurement time & background measurement time was considered, and MDA values according to background measurement time and sample measurement time in land samples(river soil, surface soil, drinking water, underground water, surface water, pine leaf, mugwort) analysis among environmental samples were compared. Seeing the water sample analysis result, it was shown that most of the samples were not detected, and most of the samples in land specimen analysis showed to be below the detection limit of "Ministry of Education, Science and Technology Announcement Je-2008-28-ho", but $^{137}Cs$ which is one of artificial radioactive nuclide was detected in some samples. It can be traced back to 1950s and 1960s when nuclear tests were carried out in atmosphere and catastrophic Chernobyl atomic power station accident that caused fallouts in the sky, and this is common level of detection that can be observed worldwide. Seeing the result that the $^{134}Cs$(which is a isotope of $^{137}Cs$, and it has relatively short half life) was not detected in all samples, it can be considered it doesn't affect to the operation of atomic power station.

A Study on the Improvement of Scaling Factor Determination Using Artificial Neural Network (인공신경망 이론을 이용한 척도인자 결정방법의 향상방안에 관한 연구)

  • Sang-Chul Lee;Ki-Ha Hwang;Sang-Hee Kang;Kun-Jai Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed information about the characteristics and the quantities of radionuclides in waste package. Most of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the indirect method by which the concentration of the Difficult-to-Measure (DTM) nuclide is estimated using the correlations of concentration - it is called the scaling factor - between Easy-to-Measure (Key) nuclides and DTM nuclides with the measured concentration of the Key nuclide. In general, the scaling factor is determined by the log mean average (LMA) method and the regression method. However, these methods are inadequate to apply to fission product nuclides and some activation product nuclides such as 14$^{C}$ and 90$^{Sr}$ . In this study, the artificial neural network (ANN) method is suggested to improve the conventional SF determination methods - the LMA method and the regression method. The root mean squared errors (RMSE) of the ANN models are compared with those of the conventional SF determination models for 14$^{C}$ and 90$^{Sr}$ in two parts divided by a training part and a validation part. The SF determination models are arranged in the order of RMSEs as the following order: ANN model

  • PDF

Development of an Anomaly Detection Algorithm for Verification of Radionuclide Analysis Based on Artificial Intelligence in Radioactive Wastes (방사성폐기물 핵종분석 검증용 이상 탐지를 위한 인공지능 기반 알고리즘 개발)

  • Seungsoo Jang;Jang Hee Lee;Young-su Kim;Jiseok Kim;Jeen-hyeng Kwon;Song Hyun Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2023
  • The amount of radioactive waste is expected to dramatically increase with decommissioning of nuclear power plants such as Kori-1, the first nuclear power plant in South Korea. Accurate nuclide analysis is necessary to manage the radioactive wastes safely, but research on verification of radionuclide analysis has yet to be well established. This study aimed to develop the technology that can verify the results of radionuclide analysis based on artificial intelligence. In this study, we propose an anomaly detection algorithm for inspecting the analysis error of radionuclide. We used the data from 'Updated Scaling Factors in Low-Level Radwaste' (NP-5077) published by EPRI (Electric Power Research Institute), and resampling was performed using SMOTE (Synthetic Minority Oversampling Technique) algorithm to augment data. 149,676 augmented data with SMOTE algorithm was used to train the artificial neural networks (classification and anomaly detection networks). 324 NP-5077 report data verified the performance of networks. The anomaly detection algorithm of radionuclide analysis was divided into two modules that detect a case where radioactive waste was incorrectly classified or discriminate an abnormal data such as loss of data or incorrectly written data. The classification network was constructed using the fully connected layer, and the anomaly detection network was composed of the encoder and decoder. The latter was operated by loading the latent vector from the end layer of the classification network. This study conducted exploratory data analysis (i.e., statistics, histogram, correlation, covariance, PCA, k-mean clustering, DBSCAN). As a result of analyzing the data, it is complicated to distinguish the type of radioactive waste because data distribution overlapped each other. In spite of these complexities, our algorithm based on deep learning can distinguish abnormal data from normal data. Radionuclide analysis was verified using our anomaly detection algorithm, and meaningful results were obtained.

Development of Micro-Blast Type Scabbling Technology for Contaminated Concrete Structure in Nuclear Power Plant Decommissioning

  • Lee, Kyungho;Chung, Sewon;Park, Kihyun;Park, SeongHee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers' radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1-107 Bq·g-1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr-1 decontamination speed, better than that of TWI (7,500 cm2·hr-1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.