• Title/Summary/Keyword: artificial organ

Search Result 95, Processing Time 0.028 seconds

A Study on the Mechanism of the Robot Hand based on the Segment Binary Control (구간분할 바이너리 제어기반 로봇핸드의 메커니즘에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1232-1235
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

A study on Dynamic Characteristics of the Robot Hand Using the Segmented Binary Control (구간분할 바이너리 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.144-149
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

A Study on the Dynamic Characteristics of Robot Hand based on Segmented Control (구간분할 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.310-313
    • /
    • 2005
  • In recent years, as the robot technology is developed, the researches on the artificial muscle actuator that enable robot to move dexterously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electro-active polymer. These actuators have the higher energy density than the electro-mechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper, the simulation of anthropomophic robotic hand is performed using ADAMS and the segmented binary control for reducing the hysteresis of SMA is proposed. SMA is controlled by thermo-electric module. The relations between the force and the hysteresis are developed to verify the validity of the suggested method.

  • PDF

Shear induced damage of red blood cells monitored by the decrease of their deformability

  • Lee, Sung Sik;Ahn, Kyung Hyun;Lee, Seung Jong;Sun, Kyung;Goedhart, Petrus T.;Hardeman, Max. R.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.141-146
    • /
    • 2004
  • Shear-induced damage of Red Blood Cell (RBC) is an imminent problem to be solved for the practical application of artificial organs in extra corporeal circulation, as it often happens and affects physiological homeostasis of a patient. To design and operate artificial organs in a safe mode, many investigations have been set up to correlate shear and shear-induced cell damage. Most studies were focused on hemolysis i.e. the extreme case, however, it is important as well to obtain a clear understanding of pre-hemolytic mechanical damage. In this study, the change in deformability of RBC was measured by ektacytometry to investigate the damage of RBC caused by shear. To a small magnitude of pre-shear, there is little difference, but to a large magnitude of pre-shear, cell damage occurs and the effect of shear becomes significant depending on both the magnitude and imposed time of shearing. The threshold stress for cell damage was found to be approximately 30 Pa, which is much less than the threshold of mechanical hemolysis but is large enough to occur in vitro as in the extra corporeal circulation during open-heart surgery or artificial heart. In conclusion, it was found and suggested that the decrease of deformability can be used as an early indication of cell damage, in contrast to measuring plasma hemoglobin. As cell damage always occurs during flow in artificial organs, the results as well as the approach adopted here will be helpful in the design and operation of artificial organs.

Use of Dye Deposition in Cows' Excised Genital Tract to Evaluate Inseminators' and Refreshment Training to Refreshment Training to Improve Their Skill

  • Mohammed S.;Mohammad S. H.;Mohhammad A. R. S.;Khan A.H.M.S.I.
    • Journal of Embryo Transfer
    • /
    • v.20 no.2
    • /
    • pp.157-162
    • /
    • 2005
  • To find out the possible inefficiencies of artificial inseminators at rectovaginal insemination in cows, inseminators' skill were evaluated by controlling the semen thawing procedure adopted and by using the technique of dye deposition in the genital tract of slaughtered cows. This was followed by refreshment training for the inseminators. Thirty seven artificial insemination technicians regularly working in the government, cooperative and NGO (Non Government Organization) artificial insemination programmes at different places of Bangladesh were included in the study. Individual technicians were asked to thaw a semen straw and deposit dye in the genital tract of slaughtered cows following the procedures they would have adopted in their actual practices of insemination. The time and water temperature adopted by technicians were recorded and genital tract after sham artificial insemination was dissected to determine the site of dye deposition. Then, the inseminators took part in a three days intensive training program. The training program was ended up with the same tests for thawing frozen semen straw and dye deposition in the genital tract of slaughtered cows. At pre training evaluation, only $25\%\;and\;72\%\;(n=36)$ inseminators adopted co..ect thawing time and temperature, respectively. At post training evaluation, all inseminators thawed semen straws for proper time and temperature. At pretraining evaluation, $21(57\%),\;11 (30\%)\;and\;3(8\%)$ inseminators deposited dye at the body of uterus, in the vagina or in cervix, and into the horn of uterus, respectively. In $2(5\%)$ cases dye did not pass into the genital tract, instead back flowed through the space between the barrel of insemination gun and sheath. At post training evaluation, all inseminators successfully deposited dye in the body of uterus. Frequent evaluation of inseminators' skill and subsequent training would help improvement of the artificial insemination technicians' skill.

The Development of Dual Transcutaneous Energy Transmission System (DTET) for Total Artificial Heart (인공심장용 병렬 무선에너지 전송장치의 개발)

  • Choi, S.W.;Chung, J.H.;Ahn, J.M.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.239-240
    • /
    • 1998
  • DTET(Dual Transcutaneous Energy Transmission System) is the stable power transferring unit for TAH(Total Artificial Heart) which uses more power than any other artificial organ. It has better efficiency and safety than an ordinary single TET. By reducing the load, it can reduce the change of supplying current for each single TET and it causes the lower change of efficiency. The increment of magnetic flux in coils enables delivering power through thick skin. It can enable internal batteries remove when will be used in a failure of TET, for a lithium ion battery has heavier weight than TET. A DTET should be studied the effect between each coils that generate magnetic flux. It should be compared the advantage with the weakness when it is used.

  • PDF

T1-Based MR Temperature Monitoring with RF Field Change Correction at 7.0T

  • Kim, Jong-Min;Lee, Chulhyun;Hong, Seong-Dae;Kim, Jeong-Hee;Sun, Kyung;Oh, Chang-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.218-228
    • /
    • 2018
  • Purpose: The objective of this study is to determine the effect of physical changes on MR temperature imaging at 7.0T and to examine proton-resonance-frequency related changes of MR phase images and T1 related changes of MR magnitude images, which are obtained for MR thermometry at various magnetic field strengths. Materials and Methods: An MR-compatible capacitive-coupled radio-frequency hyperthermia system was implemented for heating a phantom and swine muscle tissue, which can be used for both 7.0T and 3.0T MRI. To determine the effect of flip angle correction on T1-based MR thermometry, proton resonance frequency, apparent T1, actual flip angle, and T1 images were obtained. For this purpose, three types of imaging sequences are used, namely, T1-weighted fast field echo with variable flip angle method, dual repetition time method, and variable flip angle method with radio-frequency field nonuniformity correction. Results: Signal-to-noise ratio of the proton resonance frequency shift-based temperature images obtained at 7.0T was five-fold higher than that at 3.0T. The T1 value increases with increasing temperature at both 3.0T and 7.0T. However, temperature measurement using apparent T1-based MR thermometry results in bias and error because B1 varies with temperature. After correcting for the effect of B1 changes, our experimental results confirmed that the calculated T1 increases with increasing temperature both at 3.0T and 7.0T. Conclusion: This study suggests that the temperature-induced flip angle variations need to be considered for accurate temperature measurements in T1-based MR thermometry.

Development and Animal Tests of Artificial Heart Valves (인공심장판막의 개발 및 동물실)

  • 이재영
    • Journal of Chest Surgery
    • /
    • v.20 no.3
    • /
    • pp.458-472
    • /
    • 1987
  • A heart supplies bloods of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to this act of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of bloods. In an attempt to eliminate the affliction of heart valves, the operation method to repair with artificial heart valves has been developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. The artificial heart valve using pyrolytic carbon has been developed at KAIST, which was proved to be stable in the mechanical performance and durability. Therefore, the in viva performance of this valve was examined through animal tests. The artificial heart valves used in this study are tilting disc type valves, in which the disc were made of graphite coated with pyrolytic carbon and the cages were made of titanium. In viva testings of these valves were performed in 12 dogs, in which right ventriculo-pulmonary arterial [Croup I] or inter-aortic [Croup IV] valved conduit was implanted using polytetrafluoroethylene conduits containing KAIST valve and aortic valve [Group II] or pulmonary valve [Croup III] was replaced by a KAIST valve with a 21mm or 19mm tissue annulus diameter. In group I and II, pre-and post-operative transvalvular pressure gradient was measured and compared with other prosthetic valves. During post operative period laboratory examination was performed including hemoglobin, hematocrit, red cell count, white cell, lactic acid dehydrogenase and platelet. The eight surviving dogs were sacrificed and autopsy was performed at 2, 6, and 8 weeks. KAIST valve has low transvalvular gradient and relatively high orifice area. Average ventriculo-aortic peak systolic transvalvular gradient was 14 mmHg in 21 mm valve and 19 mmHg in 19 mm valve. The valve has slight intravascular hemolysis effect. Thrombogenic effect of low polishing quality and eddy currents around small orifice is high. The valve has vulnerability of disc movement. These animal tests suggest that the improvement of the heart valve design, surface polishing state and prescription methods.

  • PDF

Reconstruction of basement membrane in the artificial skin (인공피부 제조시 기저막 재건의 효과)

  • Yi, J.Y.;Park, K.C.;Kim, S.H.;Suh, H.;Son, Y.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.335-338
    • /
    • 1996
  • We attempted to reconstruct basement membrane (BM) in between the epidermal compartment and dermal compartment in the artificial skin preparation and examine its effect on the skin architecture as well as on the epidermal differentiation. Laminin, one of the component of BM, stimulate the migration of the basal cells but type IV collagen which is a major component of the mechanical network of BM did not stimulate epidermal migration. However laminin in the presence of type IV collagen at a 1:1 molar ratio did not stimulate epidermal migration but provide nice demarcation between epidermis and dermis. This mixture of laminin and type IV collagen enhanced epidermal differentiation in the artificial skin based on the morphological observation as well as biochemical criteria. The epidermal acquirement of migratory ability on the laminin-rich substrate suggest that this type of unbalance in the expression of the components of BM may prevail in the area of healing tissue and the invasive transition of the tumor. The result in this study provide the technical improvement in the artificial skin preparation and further application of this technique for the reconstruction of other bio-artificial organ.

  • PDF