• Title/Summary/Keyword: artificial motion

Search Result 409, Processing Time 0.028 seconds

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.

Characteristics of Pelvic Ranges According to Artificial Leg Length Discrepancy During Gait: Three-Dimensional Analysis in Healthy Individuals (보행 중 인위적 다리길이 차이에 따른 3차원적 골반 가동범위의 특성)

  • Kim, Yongwook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Purpose : The purpose of this study was to analyze the dynamic range of motion (ROM) of pelvic and translation of center of mass (COM) when wearing different shoe insole lifts according to leg length discrepancy (LLD) during free speed gait. Methods : Thirty-five healthy adults were participated in this study. Kinematic data were collected using a Vicon motion capture system. Reflective and cluster 40 markers attached to participants lower extremities and were asked to walk in a 6 m gait way under three different shoe lift conditions (without any insole, 1 cm insole, and 2 cm insole). The pelvic ROM and COM translation in three planes were sorted using a Nexus software, and a Visual3D motion analysis software was used to coordinate all kinematic data. Results : There were significantly increased maximal pelvic elevation and total pelvic range in coronal plane when wearing a standard shoe with 2 cm insole lift during gait (p<.05). When wearing a standard shoe with 2 cm insole lift, the total range of the pelvic segment were significantly different in all three motion planes (p<.05). Conclusion : Although LLD of less than 2 cm develops abnormal movement pattern of the pelvis and may cause of musculoskeletal diseases such as low back pain, hip and knee joint osteoarthritis, therefore intensive various physical therapy interventions for LLD are needed.

NUMERICAL STUDY ON ELECTROPHORETIC MOTION OF A BIO-POLYMER THROUGH A NANO-PORE (나노 세공을 통한 비드 체인의 전기영동에 관한 수치해석적 연구)

  • Alapati, Suresh;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.575-580
    • /
    • 2010
  • In this work, the electrophoretic motion of dsDNA molecule represented by a polymer through an artificial nano-pore in a membrane is simulated using the numerical method combining the lattice Boltzmann and Langevin molecular dynamic method. The polymer motion is represented by Langevin molecular dynamics technique while the fluid flow is taken into account by fluctuating lattice-Boltzmann method. The hydrodynamic interactions between the polymer and solvent in a confined space with a membrane having a hole are considered explicitly through the frictional and the random forces. The electric field intensity over the space is obtained from a finite difference method. Initially, the polymer is placed at one side of the space, and an electric field is applied to drive the polymer to the other side of the space through the nano-pore. In future, we plan to study the effect of the polymer size and the electric field on the electrophoretic velocity.

  • PDF

Effect of preparation of organic ferroelectric P(VDF-TrFE) nanostructure on the improvement of tennis performance

  • Qingyu Wang
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.329-334
    • /
    • 2023
  • Organic ferroelectric material found vast application in a verity of engineering and health technology fields. In the present study, we investigated the application of the deformable organic ferroelectric in motion measurement and improving performance in tennis players. Flexible ferroelectric material P(VDF-TrFE) could be used in wearable motion sensors in tennis player transferring velocity and acceleration data to collecting devises for analyzing the best pose and movements in tennis players to achieve best performances in terms of hitting ball and movement across the tennis court. In doing so, ferroelectric-based wearable sensors are used in four different locations on the player body to analyze the movement and also a sensor on the tennis ball to record the velocity and acceleration. In addition, poses of tennis players were analyzed to find out the best pose to achieve best acceleration and movement. The results indicated that organic ferroelectric-based sensors could be used effectively in sensing motion of tennis player which could be utilized in the optimization of posing and ball hitting in the real games.

A Study on K-POP Video Content Using Metaverse Virtual Technology

  • Yuanxue Tian;Xinyi Shan;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 2024
  • The meta-universe, as an innovative medium of digital technology that integrates the virtual and real worlds, is revolutionizing the traditional K-POP industry by leveraging advanced technologies such as artificial intelligence (AI), virtual reality (VR), augmented reality (AR), and motion capture. This transformation is gradually reshaping the entire entertainment sector. As K-POP continues its global expansion, the industry is actively exploring the application of virtual technologies, presenting viewers with a more diverse range of entertainment content. This thesis reviews the development history of virtual technology in K-POP, analyzes the practical applications of VR, AR, AI, and motion capture within the industry, and examines how these technologies enhance artist-fan interactions and immersion. The study demonstrates that the incorporation of virtual technology not only overcomes the limitations of traditional entertainment modes but also provides new directions for the future development of the K-POP industry.

Systematic Review of Upper Extremity Movement Assessment and Artificial Intelligence Convergence Research in Brain Injured Patients (뇌손상 환자의 상지 움직임 평가와 인공지능 융합연구에 관한 체계적 고찰)

  • Park, Sun Ha;Park, Hae Yean
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2022
  • The purpose of this study is to identify trends in the application of artificial intelligence by analyzing upper extremity movement assessment and artificial intelligence convergence research using a systematic literature review method. The research was conducted using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Among the 380 articles searched in three databases, 8 articles were finally selected according to the selection and exclusion criteria. For the evaluation of upper extremity movement, motion performance evaluation, FMA, and ARAT were used. For quantification, data were extracted using various tools, and upper extremity movement classification, recovery prognosis prediction, and evaluation tool score were predicted using artificial intelligence. This study is meaningful in that it systematically reviewed studies that objectively evaluated upper extremity movement using artificial intelligence and identified the direction in which artificial intelligence is being applied. Based on this, the introduction of artificial intelligence technology in the assessment of upper extremity movements is expected to help objectively identify the intervention effect and the patient's recovery.

Interactive sound experience interface based on virtual concert hall (가상 콘서트홀 기반의 인터랙티브 음향 체험 인터페이스)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 2017
  • In this paper, we propose an interface for interactive sound experience in the virtual concert hall. The proposed interface consists of two systems, called 'virtual acoustic position' and 'virtual active listening'. To provide these systems, we applied an artificial reverberation algorithm, multi-channel source separation and head-related transfer function. The proposed interface was implemented by using Unity. The interface provides the virtual concert hall to user through Oculus Rift, one of the virtual reality headsets. Moreover, we used Leap Motion as a control device to allow a user experience the system with free-hand. And user can experience the sound of the system through headphones.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

A Study on the Performance of Dynamic Restraint Manipulator for Drilling Alveolar Bone in Mandible (하악골의 치조골 골삭제를 위한 동적 제약 기구부의 성능에 관한 연구)

  • Kim, Gwang-Ho;Lee, Dong-Woon;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.105-112
    • /
    • 2020
  • The increase in the edentulous jaw which occurs in the aged population has led to personal dental health concerns. In the case of dental implant surgery, the duration of a patient's recovery depends on the surgical plan and their physicical ability. A device may be required to assist a physician in controlling vibration reduction of free-hand drilling and prescribing a good treatment plan that is suitable for the patient's condition. In this work, an artificial tooth-root implant assistant manipulator was studied. The structure and the vibration analysis of the dynamic restraint manipulator that is for drilling the alveolar bone in the mandible bone were performed, and the structural stability was analyzed. Further, a virtual prototype of an artificial tooth-root implant assisted manipulator was fabricated and tested. Hence, the state of the Remote Center of Motion (RCM) point and the driving state of the manipulator were confirmed. Furthermore, the drilling experiments were performed by using materials similar to a human jawbone in order to evaluate the performance of the drilling process that is operated using the assistant manipulator.