• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.025 seconds

Analysis of Malware Group Classification with eXplainable Artificial Intelligence (XAI기반 악성코드 그룹분류 결과 해석 연구)

  • Kim, Do-yeon;Jeong, Ah-yeon;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.559-571
    • /
    • 2021
  • Along with the increase prevalence of computers, the number of malware distributions by attackers to ordinary users has also increased. Research to detect malware continues to this day, and in recent years, research on malware detection and analysis using AI is focused. However, the AI algorithm has a disadvantage that it cannot explain why it detects and classifies malware. XAI techniques have emerged to overcome these limitations of AI and make it practical. With XAI, it is possible to provide a basis for judgment on the final outcome of the AI. In this paper, we conducted malware group classification using XGBoost and Random Forest, and interpreted the results through SHAP. Both classification models showed a high classification accuracy of about 99%, and when comparing the top 20 API features derived through XAI with the main APIs of malware, it was possible to interpret and understand more than a certain level. In the future, based on this, a direct AI reliability improvement study will be conducted.

The Effects of Logistics Technology Acceptance in the Fourth Industrial Revolution on Logistics Safety Performance: The Moderated Mediating Effect of Logistics Safety Behavior through Safety Culture

  • Kim, Young-Min
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.57-80
    • /
    • 2022
  • Purpose - This study aims to examine the relationships between the acceptance of the 4th industrial revolution logistics technology, logistics safety behavior, and logistics safety performance, as well as the moderated mediating effects of logistics safety behavior through safety culture in Korea. Design/methodology - Research models and hypotheses were established based on prior research related to the 4th industrial revolution logistics technology, logistics safety, and logistics performance. The survey was conducted on the employees of logistics companies, and reliability analysis, confirmatory factor analysis, discriminant validity analysis, structural equation model analysis, and mediating effect analysis were performed. In addition, the moderated mediating effect analysis applying SPSS Process Model No. 7 was conducted. Findings - Usefulness and sociality of the acceptance of the 4th industrial revolution logistics technology had a significant effect on logistics safety behavior. Ease of use, sociality, and efficiency had meaningful effect on logistics safety performance. And in the relationships between the acceptance of logistics technology and logistics safety performance, logistics safety behavior had a significant mediating effect. But the moderated mediating effect of safety behavior through safety culture was not significant. Logistics companies can improve logistics safety performance through the utilization of new logistics technologies such as intelligent logistics robots, autonomous driving technology, and artificial intelligence, etc. Originality/value - This is the first study to analyze the relationships between the acceptance of logistics technology in the 4th industrial revolution and logistics safety. In addition, previous studies analyzed mediating effects or moderating effects, but this is the first study to identify the moderated mediating effects of safety behavior through safety culture. In other words, it has originality in terms of research methodology.

Performance Comparisons of GAN-Based Generative Models for New Product Development (신제품 개발을 위한 GAN 기반 생성모델 성능 비교)

  • Lee, Dong-Hun;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.867-871
    • /
    • 2022
  • Amid the recent rapid trend change, the change in design has a great impact on the sales of fashion companies, so it is inevitable to be careful in choosing new designs. With the recent development of the artificial intelligence field, various machine learning is being used a lot in the fashion market to increase consumers' preferences. To contribute to increasing reliability in the development of new products by quantifying abstract concepts such as preferences, we generate new images that do not exist through three adversarial generative neural networks (GANs) and numerically compare abstract concepts of preferences using pre-trained convolution neural networks (CNNs). Deep convolutional generative adversarial networks (DCGAN), Progressive growing adversarial networks (PGGAN), and Dual Discriminator generative adversarial networks (DANs), which were trained to produce comparative, high-level, and high-level images. The degree of similarity measured was considered as a preference, and the experimental results showed that D2GAN showed a relatively high similarity compared to DCGAN and PGGAN.

A Study on the Influence of ChatGPT Characteristics on Acceptance Intention: Focusing on the Moderating Effect of Teachers' Digital Technology (ChatGPT의 특성이 사용의도에 미치는 영향에 관한 연구: 교사의 디지털 기술 조절효과를 중심으로)

  • Kim Hyojung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • ChatGPT is an artificial intelligence-based conversation agent developed by OpenAI using natural language processing technology. In this study, an empirical study was conducted on incumbent teachers on the intention to use the newly emerged Chat GPT. First, we studied how accuracy, entertainment, system accessibility, perceived usefulness, and perceived ease of use affect ChatGPT's acceptance intention. In addition, we analyzed whether perceived usefulness and perceived ease of use differ in the intention to accept depending on the digital technology of teachers. As a result of the study, the suitability of the structural equation model was generally good. Accuracy and entertainment were found to have a significant effect on perceived usefulness, and system accessibility was found to have a significant effect on perceived ease of use. In the analysis of teachers' digital technology control effects, it was found that perceived usefulness and perceived ease of use had a control effect between acceptance intentions. It was found that the group with high digital skills of teachers was strongly intended to accept the service regardless of perceived usefulness and ease of use. In the group with low digital skills of teachers, it is thought that ChatGPT's service shows the acceptance intention only when the perceived usefulness and ease of use are high. Therefore, in the group with low digital technology, it is necessary to seek teaching activities such as the development of instructional models using ChatGPT.

Development of Plant Engineering Analysis Platform using Knowledge Base (지식베이스를 이용한 플랜트 엔지니어링 분석 플랫폼 개발)

  • Young-Dong Ko;Hyun-Soo Kim
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Engineering's work area for plants is a technical area that directly affects productivity, performance, and quality throughout the lifecycle from planning, design, construction, operation and disposal. Using the different types of data that occur to make decisions is important not only in the subsequent process but also in terms of cyclical cost reduction. However, there is a lack of systems to manage and analyze these integrated data. In this paper, we developed a knowledge base-based plant engineering analysis platform that can manage and utilize data. The platform provides a knowledge base that preprocesses previously collected engineering data, and provides analysis and visualization to use it as reference data in AI models. Users can perform data analysis through the use of prior technology and accumulated knowledge through the platform and use visualization in decision-support and systematically manage construction that relied only on experience.

Research on the introduction and use of Big Data for trade digital transformation (무역 디지털 트랜스포메이션을 위한 빅데이터 도입 및 활용에 관한 연구)

  • Joon-Mo Jung;Yoon-Say Jeong
    • Korea Trade Review
    • /
    • v.47 no.3
    • /
    • pp.57-73
    • /
    • 2022
  • The process and change of convergence in the economy and industry with the development of digital technology and combining with new technologies is called Digital Transformation. Specifically, it refers to innovating existing businesses and services by utilizing information and communication technologies such as big data analysis, Internet of Things, cloud computing, and artificial intelligence. Digital transformation is changing the shape of business and has a wide impact on businesses and consumers in all industries. Among them, the big data and analytics market is emerging as one of the most important growth drivers of digital transformation. Integrating intelligent data into an existing business is one of the key tasks of digital transformation, and it is important to collect and monitor data and learn from the collected data in order to efficiently operate a data-based business. In developed countries overseas, research on new business models using various data accumulated at the level of government and private companies is being actively conducted. However, although the trade and import/export data collected in the domestic public sector is being accumulated in various types and ranges, the establishment of an analysis and utilization model is still in its infancy. Currently, we are living in an era of massive amounts of big data. We intend to discuss the value of trade big data possessed from the past to the present, and suggest a strategy to activate trade big data for trade digital transformation and a new direction for future trade big data research.

Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs

  • Jung Eun Huh; Jong Hyuk Lee;Eui Jin Hwang;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Objective: Little is known about the effects of using different expert-determined reference standards when evaluating the performance of deep learning-based automatic detection (DLAD) models and their added value to radiologists. We assessed the concordance of expert-determined standards with a clinical gold standard (herein, pathological confirmation) and the effects of different expert-determined reference standards on the estimates of radiologists' diagnostic performance to detect malignant pulmonary nodules on chest radiographs with and without the assistance of a DLAD model. Materials and Methods: This study included chest radiographs from 50 patients with pathologically proven lung cancer and 50 controls. Five expert-determined standards were constructed using the interpretations of 10 experts: individual judgment by the most experienced expert, majority vote, consensus judgments of two and three experts, and a latent class analysis (LCA) model. In separate reader tests, additional 10 radiologists independently interpreted the radiographs and then assisted with the DLAD model. Their diagnostic performance was estimated using the clinical gold standard and various expert-determined standards as the reference standard, and the results were compared using the t test with Bonferroni correction. Results: The LCA model (sensitivity, 72.6%; specificity, 100%) was most similar to the clinical gold standard. When expert-determined standards were used, the sensitivities of radiologists and DLAD model alone were overestimated, and their specificities were underestimated (all p-values < 0.05). DLAD assistance diminished the overestimation of sensitivity but exaggerated the underestimation of specificity (all p-values < 0.001). The DLAD model improved sensitivity and specificity to a greater extent when using the clinical gold standard than when using the expert-determined standards (all p-values < 0.001), except for sensitivity with the LCA model (p = 0.094). Conclusion: The LCA model was most similar to the clinical gold standard for malignant pulmonary nodule detection on chest radiographs. Expert-determined standards caused bias in measuring the diagnostic performance of the artificial intelligence model.

A Study of Traffic Signal Timing Optimization Based on PSO-BFO Algorithm (PSO-BFO 알고리즘을 통한 교통 신호 최적화 연구)

  • Hong Ki An;Gimok Bae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.182-195
    • /
    • 2023
  • Recently, research on traffic signal control using artificial intelligence algorithms has been receiving attention, and many traffic signal control models are being studied. However, most studies either focused on independent intersections or are theoretical studies that calculate signal cycle length according to changes in traffic volume. Therefore, this study was conducted on a signalized intersection - roundabout in Gajwa-ro. The Particle Swarm Optimization - Bacterial Foraging Optimization (PSO-BFO) algorithm was proposed, which is developed from the GA and PSO algorithms for minimizing congestion at two intersections. As a result, optimum cycle length was determined to be 158 seconds. The Verkehr In Stadten - SIMulationsmodell (VISSIM) results showed that there was 3.4% increased capacity, 8.2% reduced delay and 8.3% reduced number of stops at the Gajwa-ro signalized intersection. Additionally, at the roundabout, a 9.2% increase in capacity, a 7.1% reduction in delay, and a 27.2% decrease in the number of stops was observed.

A Study on Correction and Prevention System of Real-time Forward Head Posture (실시간 거북목 증후군 자세 교정 및 예방 시스템 연구)

  • Woo-Seok Choi;Ji-Mi Choi;Hyun-Min Cho;Jeong-Min Park;Kwang-in Kwak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.147-156
    • /
    • 2024
  • This paper introduces the design of a turtle neck posture correction and prevention system for users of digital devices for a long time. The number of forward head posture patients in Korea increased by 13% from 2018 to 2021, and has not yet improved according to the latest statistics at the present time. Because of the nature of the disease, prevention is more important than treatment. Therefore, in this paper, we designed a system based on built-camera in most laptops to increase the accessiblility of the system, and utilize the features such as Pose Estimation, Face Landmarks Detection, Iris Tracking, and Depth Estimation of Google Mediapipe to prevent the need to produce artificial intelligence models and allow users to easily prevent forward head posture.

Empirical Research on the Interaction between Visual Art Creation and Artificial Intelligence Collaboration (시각예술 창작과 인공지능 협업의 상호작용에 관한 실증연구)

  • Hyeonjin Kim;Yeongjo Kim;Donghyeon Yun;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.517-524
    • /
    • 2024
  • Generative AI, exemplified by models like ChatGPT, has revolutionized human-machine interactions in the 21st century. As these advancements permeate various sectors, their intersection with the arts is both promising and challenging. Despite the arts' historical resistance to AI replacement, recent developments have sparked active research in AI's role in artistry. This study delves into the potential of AI in visual arts education, highlighting the necessity of swift adaptation amidst the Fourth Industrial Revolution. This research, conducted at a 4-year global higher education institution located in Gyeongbuk, involved 70 participants who took part in a creative convergence module course project. The study aimed to examine the influence of AI collaboration in visual arts, analyzing distinctions across majors, grades, and genders. The results indicate that creative activities with AI positively influence students' creativity and digital media literacy. Based on these findings, there is a need to further develop effective educational strategies and directions that incorporate AI.