• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.028 seconds

GenAI(Generative Artificial Intelligence) Technology Trend Analysis Using Bigkinds: ChatGPT Emergence and Startup Impact Assessment (빅카인즈를 활용한 GenAI(생성형 인공지능) 기술 동향 분석: ChatGPT 등장과 스타트업 영향 평가)

  • Lee, Hyun Ju;Sung, Chang Soo;Jeon, Byung Hoon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.65-76
    • /
    • 2023
  • In the field of technology entrepreneurship and startups, the development of Artificial Intelligence(AI) has emerged as a key topic for business model innovation. As a result, venture firms are making various efforts centered on AI to secure competitiveness(Kim & Geum, 2023). The purpose of this study is to analyze the relationship between the development of GenAI technology and the startup ecosystem by analyzing domestic news articles to identify trends in the technology startup field. Using BIG Kinds, this study examined the changes in GenAI-related news articles, major issues, and trends in Korean news articles from 1990 to August 10, 2023, focusing on the emergence of ChatGPT before and after, and visualized the relevance through network analysis and keyword visualization. The results of the study showed that the mention of GenAI gradually increased in the articles from 2017 to 2023. In particular, OpenAI's ChatGPT service based on GPT-3.5 was highlighted as a major issue, indicating the popularization of language model-based GenAI technologies such as OpenAI's DALL-E, Google's MusicLM, and VoyagerX's Vrew. This proves the usefulness of GenAI in various fields, and since the launch of ChatGPT, Korean companies have been actively developing Korean language models. Startups such as Ritten Technologies are also utilizing GenAI to expand their scope in the technology startup field. This study confirms the connection between GenAI technology and startup entrepreneurship activities, which suggests that it can support the construction of innovative business strategies, and is expected to continue to shape the development of GenAI technology and the growth of the startup ecosystem. Further research is needed to explore international trends, the utilization of various analysis methods, and the possibility of applying GenAI in the real world. These efforts are expected to contribute to the development of GenAI technology and the growth of the startup ecosystem.

  • PDF

What Concerns Does ChatGPT Raise for Us?: An Analysis Centered on CTM (Correlated Topic Modeling) of YouTube Video News Comments (ChatGPT는 우리에게 어떤 우려를 초래하는가?: 유튜브 영상 뉴스 댓글의 CTM(Correlated Topic Modeling) 분석을 중심으로)

  • Song, Minho;Lee, Soobum
    • Informatization Policy
    • /
    • v.31 no.1
    • /
    • pp.3-31
    • /
    • 2024
  • This study aimed to examine public concerns in South Korea considering the country's unique context, triggered by the advent of generative artificial intelligence such as ChatGPT. To achieve this, comments from 102 YouTube video news related to ethical issues were collected using a Python scraper, and morphological analysis and preprocessing were carried out using Textom on 15,735 comments. These comments were then analyzed using a Correlated Topic Model (CTM). The analysis identified six primary topics within the comments: "Legal and Ethical Considerations"; "Intellectual Property and Technology"; "Technological Advancement and the Future of Humanity"; "Potential of AI in Information Processing"; "Emotional Intelligence and Ethical Regulations in AI"; and "Human Imitation."Structuring these topics based on a correlation coefficient value of over 10% revealed 3 main categories: "Legal and Ethical Considerations"; "Issues Related to Data Generation by ChatGPT (Intellectual Property and Technology, Potential of AI in Information Processing, and Human Imitation)"; and "Fear for the Future of Humanity (Technological Advancement and the Future of Humanity, Emotional Intelligence, and Ethical Regulations in AI)."The study confirmed the coexistence of various concerns along with the growing interest in generative AI like ChatGPT, including worries specific to the historical and social context of South Korea. These findings suggest the need for national-level efforts to ensure data fairness.

Evaluation of Interpretability for Generated Rules from ANFIS (ANFIS에서 생성된 규칙의 해석용이성 평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.123-140
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of outstanding performance of control and forecasting accuracy. ANFIS has capability to refine its fuzzy rules interactively with human expert. In particular, when we use initial rule structure for machine learning which is generated from human expert, it is highly probable to reach global optimum solution as well as shorten time to convergence. We propose metrics to evaluate interpretability of generated rules as a means of acquiring domain knowledge and compare level of interpretability of ANFIS fuzzy rules to those of C5.0 classification rules. The proposed metrics also can be used to evaluate capability of rule generation for the various machine learning methods.

  • PDF

User Bandwidth Demand Centric Soft-Association Control in Wi-Fi Networks

  • Sun, Guolin;Adolphe, Sebakara Samuel Rene;Zhang, Hangming;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.709-730
    • /
    • 2017
  • To address the challenge of unprecedented growth in mobile data traffic, ultra-dense network deployment is a cost efficient solution to offload the traffic over some small cells. The overlapped coverage areas of small cells create more than one candidate access points for one mobile user. Signal strength based user association in IEEE 802.11 results in a significantly unbalanced load distribution among access points. However, the effective bandwidth demand of each user actually differs vastly due to their different preferences for mobile applications. In this paper, we formulate a set of non-linear integer programming models for joint user association control and user demand guarantee problem. In this model, we are trying to maximize the system capacity and guarantee the effective bandwidth demand for each user by soft-association control with a software defined network controller. With the fact of NP-hard complexity of non-linear integer programming solver, we propose a Kernighan Lin Algorithm based graph-partitioning method for a large-scale network. Finally, we evaluated the performance of the proposed algorithm for the edge users with heterogeneous bandwidth demands and mobility scenarios. Simulation results show that the proposed adaptive soft-association control can achieve a better performance than the other two and improves the individual quality of user experience with a little price on system throughput.

A fully deep learning model for the automatic identification of cephalometric landmarks

  • Kim, Young Hyun;Lee, Chena;Ha, Eun-Gyu;Choi, Yoon Jeong;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.299-306
    • /
    • 2021
  • Purpose: This study aimed to propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data and to verify its accuracy considering inter-examiner variability. Materials and Methods: In total, 950 lateral cephalometric images from Yonsei Dental Hospital were used. Two calibrated examiners manually identified the 13 most important landmarks to set as references. The proposed deep learning model has a 2-step structure-a region of interest machine and a detection machine-each consisting of 8 convolution layers, 5 pooling layers, and 2 fully connected layers. The distance errors of detection between 2 examiners were used as a clinically acceptable range for performance evaluation. Results: The 13 landmarks were automatically detected using the proposed model. Inter-examiner agreement for all landmarks indicated excellent reliability based on the 95% confidence interval. The average clinically acceptable range for all 13 landmarks was 1.24 mm. The mean radial error between the reference values assigned by 1 expert and the proposed model was 1.84 mm, exhibiting a successful detection rate of 36.1%. The A-point, the incisal tip of the maxillary and mandibular incisors, and ANS showed lower mean radial error than the calibrated expert variability. Conclusion: This experiment demonstrated that the proposed deep learning model can perform fully automatic identification of cephalometric landmarks and achieve better results than examiners for some landmarks. It is meaningful to consider between-examiner variability for clinical applicability when evaluating the performance of deep learning methods in cephalometric landmark identification.

A Proposal of Deep Learning Based Semantic Segmentation to Improve Performance of Building Information Models Classification (Semantic Segmentation 기반 딥러닝을 활용한 건축 Building Information Modeling 부재 분류성능 개선 방안)

  • Lee, Ko-Eun;Yu, Young-Su;Ha, Dae-Mok;Koo, Bon-Sang;Lee, Kwan-Hoon
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.22-33
    • /
    • 2021
  • In order to maximize the use of BIM, all data related to individual elements in the model must be correctly assigned, and it is essential to check whether it corresponds to the IFC entity classification. However, as the BIM modeling process is performed by a large number of participants, it is difficult to achieve complete integrity. To solve this problem, studies on semantic integrity verification are being conducted to examine whether elements are correctly classified or IFC mapped in the BIM model by applying an artificial intelligence algorithm to the 2D image of each element. Existing studies had a limitation in that they could not correctly classify some elements even though the geometrical differences in the images were clear. This was found to be due to the fact that the geometrical characteristics were not properly reflected in the learning process because the range of the region to be learned in the image was not clearly defined. In this study, the CRF-RNN-based semantic segmentation was applied to increase the clarity of element region within each image, and then applied to the MVCNN algorithm to improve the classification performance. As a result of applying semantic segmentation in the MVCNN learning process to 889 data composed of a total of 8 BIM element types, the classification accuracy was found to be 0.92, which is improved by 0.06 compared to the conventional MVCNN.

A Study on the Current Status and Application Strategies for Intelligent Archival Information Services (지능형 기록정보서비스를 위한 선진 기술 현황 분석 및 적용 방안)

  • Kim, Tae-Young;Gang, Ju-Yeon;Kim, Geon;Oh, Hyo-Jung
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.18 no.4
    • /
    • pp.149-182
    • /
    • 2018
  • In the era of digital transformation, new technologies have begun to be applied in the field of records management, away from the traditional view that emphasized the existing institutional and administrative aspects. Therefore, this study analyzed the service status of archives, libraries, and museums applied with advanced intelligent technology and identified the differences. Then, we proposed how to apply intelligent archival information services based on the analysis results. The reason for including libraries and museums in the research is that they are covered by a single category as an information service provider. To achieve our study aims, we conducted literature and case studies. Based on the results of the case study, we proposed the application strategies of intelligent archival information services. The results of this study are expected to help develop intelligent archival service models that are suitable for the changed electronic records environment.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

Age and Gender Classification with Small Scale CNN (소규모 합성곱 신경망을 사용한 연령 및 성별 분류)

  • Jamoliddin, Uraimov;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.99-104
    • /
    • 2022
  • Artificial intelligence is getting a crucial part of our lives with its incredible benefits. Machines outperform humans in recognizing objects in images, particularly in classifying people into correct age and gender groups. In this respect, age and gender classification has been one of the hot topics among computer vision researchers in recent decades. Deployment of deep Convolutional Neural Network(: CNN) models achieved state-of-the-art performance. However, the most of CNN based architectures are very complex with several dozens of training parameters so they require much computation time and resources. For this reason, we propose a new CNN-based classification algorithm with significantly fewer training parameters and training time compared to the existing methods. Despite its less complexity, our model shows better accuracy of age and gender classification on the UTKFace dataset.

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.