• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.027 seconds

A Selection Method of Backbone Network through Multi-Classification Deep Neural Network Evaluation of Road Surface Damage Images (도로 노면 파손 영상의 다중 분류 심층 신경망 평가를 통한 Backbone Network 선정 기법)

  • Shim, Seungbo;Song, Young Eun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.106-118
    • /
    • 2019
  • In recent years, research and development on image object recognition using artificial intelligence have been actively carried out, and it is expected to be used for road maintenance. Among them, artificial intelligence models for object detection of road surface are continuously introduced. In order to develop such object recognition algorithms, a backbone network that extracts feature maps is essential. In this paper, we will discuss how to select the appropriate neural network. To accomplish it, we compared with 4 different deep neural networks using 6,000 road surface damage images. Based on three evaluation methods for analyzing characteristics of neural networks, we propose a method to determine optimal neural networks. In addition, we improved the performance through optimal tuning of hyper-parameters, and finally developed a light backbone network that can achieve 85.9% accuracy of road surface damage classification.

Using the Deep Learning for the System Architecture of Image Prediction (엔터프라이즈 환경의 딥 러닝을 활용한 이미지 예측 시스템 아키텍처)

  • Cheon, Eun Young;Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.259-264
    • /
    • 2019
  • This paper proposes an image prediction system architecture for deep running in enterprise environment. Easily transform into an artificial intelligence platform for an enterprise environment, and allow sufficient deep-running services to be developed and modified even in Java-centric architectures to improve the shortcomings of Java-centric enterprise development because artificial intelligence platforms are concentrated in the pipeline. In addition, based on the proposed environment, we propose a more accurate prediction system in the deep running architecture environment that has been previously learned through image forecasting experiments. Experiments show 95.23% accuracy in the image example provided for deep running to be performed, and the proposed model shows 96.54% accuracy compared to other similar models.

An Automated Approach for Exception Suggestion in Python-based AI Projects (Python 기반 AI 프로젝트에서 예외 제안을 위한 자동화 접근 방식)

  • Kang, Mingu;Kim, Suntae;Ryu, Duksan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.73-79
    • /
    • 2022
  • The Python language widely used in artificial intelligence (AI) projects is an interpreter language, and errors occur at runtime. In order to prevent project failure due to errors, it is necessary to handle exceptions in code that can cause exceptional situations in advance. In particular, in AI projects that require a lot of resources, exceptions that occur after long execution lead to a large waste of resources. However, since exception handling depends on the developer's experience, developers have difficulty determining the appropriate exception to catch. To solve this need, we propose an approach that recommends exceptions to catch to developers during development by learning the existing exception handling statements. The proposed method receives the source code of the try block as input and recommends exceptions to be handled in the except block. We evaluate our approach for a large project consisting of two frameworks. According to our evaluation results, the average AUPRC is 0.92 or higher when performing exception recommendation. The study results show that the proposed method can support the developer's exception handling with exception recommendation performance that outperforms the comparative models.

A Study on Efficient Natural Language Processing Method based on Transformer (트랜스포머 기반 효율적인 자연어 처리 방안 연구)

  • Seung-Cheol Lim;Sung-Gu Youn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.115-119
    • /
    • 2023
  • The natural language processing models used in current artificial intelligence are huge, causing various difficulties in processing and analyzing data in real time. In order to solve these difficulties, we proposed a method to improve the efficiency of processing by using less memory and checked the performance of the proposed model. The technique applied in this paper to evaluate the performance of the proposed model is to divide the large corpus by adjusting the number of attention heads and embedding size of the BERT[1] model to be small, and the results are calculated by averaging the output values of each forward. In this process, a random offset was assigned to the sentences at every epoch to provide diversity in the input data. The model was then fine-tuned for classification. We found that the split processing model was about 12% less accurate than the unsplit model, but the number of parameters in the model was reduced by 56%.

A Network Packet Analysis Method to Discover Malicious Activities

  • Kwon, Taewoong;Myung, Joonwoo;Lee, Jun;Kim, Kyu-il;Song, Jungsuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.143-153
    • /
    • 2022
  • With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.

Prediction model for dental implants utilization in the elderly after the national health insurance coverage of dental implants: focusing on socioeconomic factors (치과 임플란트 국민건강보험 급여화 이후 노인의 치과 임플란트 이용에 대한 예측 모형: 사회경제적 요인 중심으로)

  • Sang-Hee Lee;Kyu-Seok Kim;Hye-Young Mun;Jung-Yun Kang
    • Journal of Korean society of Dental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • Objectives: The demand for dental care is expected to increase as the population ages. This study aimed to predict the utilization of dental implant care following the expansion of national health insurance benefits for dental implants. Methods: Multiple linear regression analysis was performed on HIRA big data open portal data and DNN-based artificial intelligence models to forecast the utilization of dental care in relation to the national health insurance coverage for dental implants. Results: National health insurance coverage of dental implants was found to be associated with the number of patients using dental implant services and demonstrated a statistical significance. The dental implant services utilization increased with the increased dental implant health insurance benefits for the elderly population, increased mean by region, increased number of dental institutions by region, and increased health insurance coverage rate for dental implants. However, the dental implant services utilization decreased with the increased number of older people living alone and increased size of dental institutions. Conclusions: With the expansion of the national health insurance coverage for dental implants, it is predicted that the utilization of dental implant medical services will increase in the future.

Analysis of Trends of Medical Image Processing based on Deep Learning

  • Seokjin Im
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.283-289
    • /
    • 2023
  • AI is bringing about drastic changes not only in the aspect of technologies but also in society and culture. Medical AI based on deep learning have developed rapidly. Especially, the field of medical image analysis has been proven that AI can identify the characteristics of medical images more accurately and quickly than clinicians. Evaluating the latest results of the AI-based medical image processing is important for the implication for the development direction of medical AI. In this paper, we analyze and evaluate the latest trends in AI-based medical image analysis, which is showing great achievements in the field of medical AI in the healthcare industry. We analyze deep learning models for medical image analysis and AI-based medical image segmentation for quantitative analysis. Also, we evaluate the future development direction in terms of marketability as well as the size and characteristics of the medical AI market and the restrictions to market growth. For evaluating the latest trend in the deep learning-based medical image processing, we analyze the latest research results on the deep learning-based medical image processing and data of medical AI market. The analyzed trends provide the overall views and implication for the developing deep learning in the medical fields.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

A study on the Improvement of the Food Waste Discharge System through the Classification on Foreign Substances (이물질 구별을 통한 음식물쓰레기 배출시스템 개선에 관한 연구)

  • Kim, Yongil;Kim, Seungcheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.51-56
    • /
    • 2022
  • With the development of industrialization, the amount of food and waste is rapidly increasing. Accordingly, the government is aware of the seriousness and is making efforts in various ways to reduce it. As a part of that, the volume-based food system was introduced, and although there were several trials and errors at the beginning of the introduction, it shows a reduction effect of 20 to 30%. These results suggest that the volume-based food system is being established. However, the waste is caused by foreign substances in the process of recycling resources by collecting them from the 1st collection to the 2nd collection process. Therefore, in this study, to solve these problems fundamentally, artificial intelligence is applied to classify foreign substances and improve them. Due to the nature of food waste, there is a limit to obtaining many images, so we compare several models based on CNNs and classify them as abnormal data, that is, CNN-based models are trained on various types of foreign substances, and then models with high accuracy are selected. We intend to prepare improvement measures for maintenance, such as manpower input to protect equipment and classify foreign substances by applying it.

Design and Evaluation of ANFIS-based Classification Model (ANFIS 기반 분류모형의 설계 및 성능평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.151-165
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of its outstanding accuracy of control and forecasting area. We design a new classification model based on ANFIS and evaluate it in terms of classification accuracy. We identified ANFIS-based classification model has higher classification accuracy compared to existing classification model, C5.0 decision tree model by comparing their experimental results.

  • PDF